Dietary Lipids in Early Development and Intestinal Inflammatory Disease
Sheila M. Innis, PhD, and Kevan Jacobson, MD

Inflammatory bowel diseases are life-long reoccurring inflammatory disorders of the gastrointestinal tract and have been increasing in incidence in recent decades, notably in the pediatric population. Although genetic predisposition remains an important factor, this increased incidence most likely reflects an environmental change. One potential contributor to this is the change in dietary fat intake, with dietary intake of n-6 polyunsaturated fatty acids (PUFAs) following a similar temporal pattern to the change in inflammatory bowel disease incidence. Dietary n-6 PUFAs comprise a major, modifiable, environmental factor known to promote a heightened inflammatory response through a number of pathways, including their role as precursors for synthesis of eicosanoids and their inhibitory effect on the synthesis of the n-3 PUFAs eicosapentaenoic acid and docosahexaenoic acid. The increase in n-6 PUFA intake affects individuals of all ages, with fetal PUFA accretion and infant dietary PUFA intake from breast milk reflecting maternal dietary intake. A high level of n-6 PUFA in milk results in increased n-6 PUFA in colonic phospholipids and an exaggerated inflammatory response to chemically induced colitis. Conversely, during development, a diet low in n-6 PUFAs and high in n-3 PUFAs increases colonic n-3 fatty acids, attenuates the inflammatory response, and lowers colonic damage. High dietary n-6 PUFA intake may be an important environmental modifier that contributes to inflammatory bowel diseases.

Key words: pediatric, maternal, ulcerative colitis, Crohn’s disease, n-3 PUFA, n-6 PUFA, linoleic acid, arachidonic acid, interleukin, tumor necrosis factor, α-linoleic acid, eicosapentaenoic acid, docosahexaenoic acid

© 2007 International Life Sciences Institute

INTRODUCTION

Inflammatory bowel diseases (IBD) are chronic recurrent intestinal disorders of the intestinal tract that include ulcerative colitis (UC) and Crohn’s disease (CD). Ulcerative colitis is characterized by a diffuse inflammation limited to the mucosa, extending from the rectum in a uniform manner to involve part of, or the entire colon. In contrast, CD can affect any part of the gut, but it most commonly affects the terminal ileum and proximal colon, with localized regions of inflammation, which spreads beyond the mucosa into the deeper layers, resulting in inflammatory, structuring, or fistulizing disease.

In geographical areas traditionally associated with IBD (i.e., North America, Northern Europe, and the United Kingdom), the rates of UC and CD incidence have increased dramatically since the 1960s, although they now appear to have stabilized. As of 2004, as many as 1.4 million individuals in the United States and 2.2 million persons in Europe suffered from IBD. While the mean age at diagnosis in North America is 33–45 years for CD and about 5–10 years later for UC, the rising incidence of these conditions amongst children is of great concern. For example, epidemiological studies have revealed increases in the incidence of childhood CD in Scotland, Wales, and Western Canada, while the incidence of pediatric UC rose between 1984 and 1995 in Sweden (Table 1). These serious conditions, often require life-long medical intervention, or even major surgery. Therefore, identifying the causes of this recent increase in childhood IBD cases is an important quest.

NUTRITION AND INFLAMMATORY BOWEL DISEASE

Like many inflammatory disorders, the causes of IBD are legion, and both genetic predisposition and environmental factors are implicated. However, the rate of increase in incidence suggests environmental, rather than genetic, influences are to blame. Corroborating this are the changes seen in immigrant communities; Leicester, in the United Kingdom, has a large population of migrants from South Asia, a region with a low incidence of IBD. A prospective study of UC conducted between 1991 and 1994 found extensive colitis to be more common in second-generation South Asian migrants in Leicester than in the first generation, and the rates in second-generation migrants were comparable to those observed in the European community.
this study also highlight the importance of genetic predisposition, since the incidence of UC in second-generation South Asians (17.2 per 100,000 population per year) was considerably higher than in the European population (6.0 per 100,000 per year); it was also considerably higher than the incidence in their country of origin. Results from a study conducted in Western Canada support these findings, with the incidence of IBD among children of East Indian decent being almost three-fold that in the local pediatric community. These results suggest that people from the Indian sub-continent have a higher genetic predisposition to IBD than Europeans, but this susceptibility does not manifest until they are exposed to a Western “pro-IBD” diet.

Thus, while genetic predisposition to IBD appears to be higher in some populations than in others, environmental factors are the primary suspect for its increased incidence over the past 50 years. Among the potentially important dietary factors, evidence from a number of sources points to dietary fat, specifically polyunsaturated fatty acid (PUFA) content, as a potential contributor.

POLYUNSATURATED FATTY ACIDS AND INFLAMMATION

Dietary PUFAs are a major modifiable environmental factor known to influence inflammation. The n-6 PUFA linoleic acid (LA) is the metabolic precursor for the synthesis of arachidonic acid (ARA), which is found in abundance in plasma membrane phospholipids. Once the ARA is mobilized from the plasma membrane by phospholipase enzymes, it acts as a substrate for synthesis of a number of pro-inflammatory eicosanoids including the 2-series of prostaglandins (PGs) and the 4-series of leukotrienes. Prostaglandin E₂ has a number of pro-inflammatory effects including inducing fever, increasing vascular permeability and vasodilatation, enhancing pain and edema caused by other agents such as bradykinin and histamine, and inducing interleukin (IL)-6 production by macrophages. Leukotriene B₄ increases vascular permeability, is a potent chemotactic agent for leucocytes, induces the release of lysosomal enzymes, enhances the generation of reactive oxygen species and promotes production of pro-inflammatory cytokines such as tumor necrosis factor alpha, IL-1 and IL-6. Interestingly, ARA-derived eicosanoids are also responsible for the resolution of inflammation mediated via PGE₂, PGI₂, and lipoxins.

An increased dietary intake of the n-6 PUFAs may also contribute to a pro-inflammatory environment by inhibiting the synthesis and incorporation of the n-3 PUFA eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) derived from α-linoleic acid (ALA) into membrane lipids. The eicosanoids derived from EPA attenuate the inflammatory response through a number of mechanisms (Figure 1). They are substrates for the synthesis of the 3-PG and 5- leukotriene families of eicosanoids, they downregulate the expression of several genes involved in inflammation, including those encoding certain endothelial adhesion molecules, and decrease

Table 1. Changes over time in the incidence of Crohn’s disease (CD) and ulcerative colitis (UC) in populations with high rates of irritable bowel disease

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Population</th>
<th>Disease</th>
<th>Year</th>
<th>Incidence (per 100,000 population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armitage et al. (2001)</td>
<td>Scotland</td>
<td>Hospital discharge data; patients <19 years</td>
<td>CD</td>
<td>1971–1975</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1991–1995</td>
<td>3.1</td>
</tr>
<tr>
<td>Cosgrove et al. (1996)</td>
<td>South Glamorgan, Wales</td>
<td>Retrospective study; pediatric patients</td>
<td>CD</td>
<td>1983–1988</td>
<td>1.3</td>
</tr>
<tr>
<td>Pinski et al. (2005)</td>
<td>British Columbia, Canada</td>
<td>Retrospective chart review; patients ≥16 years</td>
<td>CD</td>
<td>1989–1993</td>
<td>3.11</td>
</tr>
<tr>
<td>Pinski et al. (2005)</td>
<td>British Columbia, Canada</td>
<td>Retrospective chart review; patients ≥16 years</td>
<td>UC</td>
<td>1990–1994</td>
<td>0.46</td>
</tr>
<tr>
<td>Lindberg et al. (2000)</td>
<td>Sweden</td>
<td>Prospective report; patients ≥15 years</td>
<td>UC</td>
<td>1984–1986</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1993–1995</td>
<td>3.2</td>
</tr>
</tbody>
</table>
production of tumor necrosis factor alpha, IL-1β, and IL-6 through several pathways including mitogen-activated protein kinases and the nuclear factor-kappa B signal transduction pathway. In addition, DHA can be metabolized to bioactive docosanoids, which have potent anti-inflammatory actions that include attenuation of leukocyte entry into sites of inflammation.

Increasing dietary n-6 PUFA intakes could therefore create a pro-inflammatory environment, while a diet low in n-6 PUFA with a favorable n-6 to n-3 PUFA balance should promote an environment more tolerant to immunological challenge. Some epidemiological evidence supports this. The major dietary source of n-3 PUFA, EPA, and DHA is fish. Inuit and Japanese societies with traditionally high EPA and DHA intakes from fish or marine mammals, and low intakes of n-6 PUFA, also tend to have low rates of IBD. Notably, the Japanese diet is becoming increasingly Westernized and IBD incidence is increasing.

CHANGES IN DIETARY FAT INTAKE

In Western nations, increased understanding of elevated plasma LDL cholesterol as a risk factor for cardiovascular disease has led to the replacement of dietary sources of saturated animal fats with vegetable oils high in the n-6 PUFA LA in liquid oils, as well as in margarines and shortenings. As a result, the dietary intake of LA has increased from about 3% dietary energy in the 1930s to about 7% in the 1980s. Currently, n-6 PUFA intake represents approximately 7% of dietary energy in the United States and about 5% in Canada. At the same time, the intake of n-3 PUFA ALA, EPA, and DHA has decreased; together with the increase in LA, this has resulted in a marked increase in the balance of n-6 to n-3 PUFA in the diet. This change in dietary PUFA intake coincides with the increased incidence of IBD and may be contributing to the increase in childhood IBD mentioned above, since the increase in n-6 PUFA and decrease in n-3 PUFA intake has affected people of all ages, including infants—it even extends to before birth.

INFLUENCE OF MATERNAL DIET ON FETAL AND NEWBORN EXPOSURE TO POLYUNSATURATED FATTY ACIDS

All n-6 and n-3 PUFAs accumulated by the fetus ultimately originate from the maternal diet, primarily through placental transfer, but also through swallowing of amniotic fluid. Although the relative proportions of ARA and DHA PUFAs are higher and LA and ALA PUFAs are lower in the plasma esterified lipids of the fetus than the mother, there is extensive evidence indicating the maternal dietary intake of n-3 and n-6 PUFAs has a profound effect on n-6 and n-3 PUFA accumulation in the fetus. Concentrations of LA, ARA, and DHA in plasma phospholipids of fetal cord blood sampled at birth showed a significant correlation with the same fatty acid in maternal plasma. Studies showing that supplementation of the maternal diet with DHA from fish or fish oils during gestation increases DHA in infant plasma and red blood cells at birth provide more specific evidence that maternal n-3 fatty acid nutrition is a critical determinant of fetal n-3 fatty acid accretion.

Fetal exposure to PUFAs is not only a result of placental transfer; fetuses swallow amniotic fluid in utero, a process important for amniotic fluid homeostasis and for fetal somatic and gastrointestinal development. Recently, it has been shown that maternal dietary fat intake also influences amniotic fluid PUFA composition. Pregnant rats who were fed an n-3 PUFA-deficient diet had significantly less DHA and higher amounts of the n-6 PUFA in their amniotic fluid when compared with rats fed a normal diet; differences were also observed in the fetal intestinal phospholipid composition. These results, and those described above, suggest that both swallowing of amniotic fluid and placental transfer of fatty acid contribute to fetal PUFA accretion, and that a maternal diet high in n-6 and low in n-3 PUFAs can change fetal PUFA content to favor a more inflammatory gastrointestinal environment. Given the low n-3 PUFA intake identified in recent studies of pregnant women in Canada and the United States, this is a concern.

The influence of the maternal diet over the PUFA composition of plasma and cellular lipids in offspring continues in breast-fed infants after birth, as the composition of human milk fat also reflects the dietary intake of the mother. Numerous studies worldwide have shown that the n-6 PUFA LA and the n-3 PUFA ALA and DHA

Figure 1. Schematic of the major pathways of n-6 and n-3 polyunsaturated fatty acid metabolism. Abbreviations: LPO, lipid peroxidation; PG, prostaglandin; TX, thromboxane; LT, leukotriene; HPEET, 5(s)-hydroperoxyeicosatetraenoic acid; HETE, 5(s)-hydroxyeicosatetraenoic acid; IL, interleukin; VCAM-1, vascular adhesion molecule-1; COX, cyclooxygenase; LOX, lipoxigenase; iNOS, inducible nitric oxide; TNF-α, tumor necrosis factor alpha.
contents in human milk depend on the mother’s PUFA intake. It is not surprising, therefore, that the n-6 PUFA content of human breast milk has increased dramatically (about two-fold since the 1950s), echoing the changes in dietary fat consumption. At the same time, the levels of DHA in human milk in Canada and the United States are some of the lowest worldwide, at about 0.2 to 0.3% compared to levels of 0.8% or higher in countries where fish is widely consumed (Table 1). For many years the correlation between the n-6 and n-3 PUFA levels in human milk and the mother’s dietary fat intake was poorly appreciated, and this led to the faulty extrapolation that the average fatty acid composition of milk in North America is the best model on which to base the PUFA composition of infant formula. Thus, modern infant formulas also contain 16–20% LA in the fat, representing 7–10% of dietary energy intake from LA in the formula-fed infant. Human milk in the 1950s contained closer to 4% energy from LA.

IMPACT OF FETAL AND PERINATAL POLYUNSATURATED FATTY ACID INTAKE ON COLON INFLAMMATORY RESPONSE

There is evidence that high n-6 PUFA intake early in life could result in a heightened response to gastrointestinal insult. Pregnant rats were fed a diet high in n-3 PUFA ALA and low in n-6 PUFA LA (i.e., low in both n-3 and n-6 PUFA) and with the n-9 monounsaturated oleic acid, or low in n-3 and high in n-6 LA. Colitis was induced chemically in the pups on postpartum day 15; at this time the pups had received no food other than the mother’s milk. The colon was then assessed for damage and inflammatory involvement. The PUFA content in the pups’ milk, as well as in the jejunum and colon, differed significantly according to the mother’s dietary PUFA intake. The response to the chemical induction of colitis was also very different between the groups. Pups born to mothers fed the diet low in n-3 and high in n-6 PUFA LA showed an exaggerated inflammatory response associated with severe macroscopic and histologic damage. In contrast, the pups born to mothers fed the high n-3 PUFA diet showed protection from excessive colonic infiltration of neutrophils and inflammatory response.

These results show that if the maternal diet is high in n-6 PUFA, this results in increased transfer of n-6 PUFA across the placenta, increased swallowing of n-6 PUFA from amniotic fluid, and an increased level of n-6 PUFA in breast milk. This culminates in increased n-6 PUFA and decreased n-3 PUFA in developing infant tissue. In turn, when presented with an inflammatory insult, this leads to a heightened inflammatory response to a gastrointestinal challenge. Interestingly, transgenic mice capable of converting n-6 PUFA to n-3 PUFA exhibit increased EPA and DHA in colon phospholipids and reduced inflammation and tissue injury in response to chemically induced colitis; this shows it is possible to modulate the gastrointestinal inflammatory response altering intestinal n-6 and n-3 PUFA. As such, it is entirely possible that the increased n-6 PUFA intake that has taken place over the past 50 years has resulted in a heightened gastrointestinal inflammatory response, so immune challenges that previously would have resolved naturally now become prolonged and develop into IBD.

CONCLUSION

Inflammatory bowel diseases are complex inflammatory conditions modulated by genetic and environmental factors. Since the 1950s the incidence of IBD has been increasing, notably in the pediatric population. Coincident with this, dietary fat intake has also changed, with increased consumption of n-6 PUFAs and a marked shift in the n-6 to n-3 PUFA balance. These changes in

Table 2. Comparison of major n-6 and n-3 polyunsaturated fatty acid content of human breast milk from different countries

<table>
<thead>
<tr>
<th>Country</th>
<th>n-6 PUFA</th>
<th>n-3 PUFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>12.7</td>
<td>0.95</td>
</tr>
<tr>
<td>Canada</td>
<td>12.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Germany</td>
<td>10.8</td>
<td>0.81</td>
</tr>
<tr>
<td>Japan</td>
<td>13.3</td>
<td>1.1</td>
</tr>
<tr>
<td>China</td>
<td>20.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Malaysia</td>
<td>8.8</td>
<td>0.30</td>
</tr>
</tbody>
</table>

*Values are from urban Chinese subjects
Abbreviation: NR, not reported.

Table 2. Comparison of major n-6 and n-3 polyunsaturated fatty acid content of human breast milk from different countries

<table>
<thead>
<tr>
<th>Country</th>
<th>n-6 PUFA</th>
<th>n-3 PUFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>12.7</td>
<td>0.95</td>
</tr>
<tr>
<td>Canada</td>
<td>12.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Germany</td>
<td>10.8</td>
<td>0.81</td>
</tr>
<tr>
<td>Japan</td>
<td>13.3</td>
<td>1.1</td>
</tr>
<tr>
<td>China</td>
<td>20.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Malaysia</td>
<td>8.8</td>
<td>0.30</td>
</tr>
</tbody>
</table>

*Values are from urban Chinese subjects
Abbreviation: NR, not reported.
dietary PUFA intake promote a heightened gastrointestinal inflammatory response, and are present at all ages, starting at conception. Although further research is needed, plausible mechanisms exist to suggest that high intakes of n-6 PUFAs, such as LA, may be an important environmental modifier contributing to IBD.

ACKNOWLEDGMENT

Funding was received from the Canadian Institute for Health Research (CIHR) and the National Research and Engineering Council (NSERC)

REFERENCES

effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics. 2001;108:E82.
46. Yuhas R, Pramuk K, Lien EL. Human milk fatty acid composition from nine countries varies most in DHA. Lipids. 2006;41:851–858.
Copyright of Nutrition Reviews is the property of International Life Sciences Institute and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.