Insulin potentiation therapy

Augmenting the effectiveness of currently used drugs.

Why can't we cure diseases like cancer, AIDS, hepatitis B and C, or herpes? I believe it's because most medications, conventional or naturopathic, do not readily permeate the affected cells.

In cancer and viral-infected cells, the drugs that can destroy or induce self-destruction (apoptosis) must be able to penetrate the cell membrane and produce a response inside the cell. That response may alter DNA synthesis, inhibit enzymes, stop growth, induce free radicals, or create change in a variety of other ways that make continued cell function impossible, ultimately leading to cell death. A drug that has an effect only outside the cell is not adequate to get the job done and fix the problem.

Although research has repeatedly proven that various chemotherapy agents, anti-microbial drugs, and a host of naturally occurring compounds readily kill cancer and infected cells in the laboratory, most do not show that rate of effectiveness inside the body. Consequently we manage, rather than cure, these conditions.

With this in mind, more and more interest has been shown in potentiation therapies—methods that augment the efficacy of currently used drugs. One such method is insulin potentiation therapy (IPT).

Insulin potentiation therapy was developed nearly 70 years ago, but has only gained popularity in the last few years. It is used as a treatment for cancer, viral disease, and a variety of neurodegenerative conditions. First, the hormone insulin is administered to increase cell membrane permeability by taking advantage of the many insulin receptors normally found on cells, increasing the intracellular concentration of the concurrently administered medicine. Glucose is then dispensed to provide cells with maximum energy. Insulin and glucose, combined in IPT, deliver drugs to the cells better, thereby enhancing
effectiveness. Consequently smaller drug doses can be used, potentially reducing side-effects.

Why and how do insulin and glucose work like this? In order to grow and metastasize, cancer cells require plenty of glucose (blood sugar) to meet their energy needs. They eat more than healthy cells, for reasons, until recently, we did not understand. How could cancer cells eat more than normal cells in light of the physical wasting cancer patients may experience? We now know that cancer cells obtain their glucose in the same way normal cells do—through the actions of insulin, which functions to carry glucose into the cell. We now know that cancer cells produce their own insulin and their own insulin receptors and do not rely solely on the pancreas for insulin production. In fact, cancer cells may be up to 20 times more sensitive to insulin and may have up to 10 times the number of receptors than normal cells.

When a cancer cell senses the administered insulin and glucose, it reacts and absorbs them rapidly. If a drug is administered at the same time as the insulin and glucose, it is piggybacked into the cell where it can work more strongly. This is the basis of insulin potentiation therapy.

IPT is not a therapy without possible risks and therefore must be administered by a trained health professional. Seven of the more than 100 doctors worldwide who have completed the proper training practise in Canada. Find out more about this treatment and the doctors who may provide it at iptq.com. 

Garrett Swetlikoff, ND, is a naturopathic physician who lives and practises in Kelowna, BC. He focuses on progressive and interventional natural medicine. He can be reached at 250-868-2205, gsweetlikoff@shaw.ca, or visit natural-medicine.ca.