Lipid Replacement and Antioxidant Supplements to Prevent Membrane Oxidation and Restore Mitochondrial Function in Metabolic Syndrome and Fatiguing Illnesses

by Prof. Garth L. Nicolson

Abstract
One of the central defects in metabolic syndrome (MS) and its associated diseases (type 2 diabetes, vascular inflammation, atherosclerosis, and renal, liver, and heart disease) as well as fatiguing illnesses is excess cellular oxidative stress mediated by reactive oxygen and nitrogen species (ROS/RNS). Oxidative stress affects many organ systems, including pancreatic beta cells, nerve cells, and immune cells, and generally affects the vascular system. Oxidative damage to mitochondrial membranes results in reduced efficiency of the electron transport chain. Recent evidence indicates that reduced mitochondrial function caused by ROS/RNS membrane oxidation is related to fatigue, a complaint in MS and the major complaint in fatiguing illnesses. Lipid Replacement Therapy administered as a nutritional supplement with antioxidants can prevent excess oxidative membrane damage, restore mitochondrial membrane function, and reduce fatigue in a variety of clinical conditions.

Introduction
Metabolic syndrome (MS), estimated in over 22% of the US population, is made up of several interrelated disturbances of glucose and lipid homeostasis. The major risk factors for MS are abdominal obesity, hyperglycemia, artherogenic dyslipidemia (increased triacylglycerols, increased levels of small and dense low-density lipoproteins, and reduced levels of high-density lipoproteins), elevated blood pressure, and the presence of prothrombotic and proinflammatory states.

Insulin resistance is one of the initial signs in the development of MS. Insulin secreted by the pancreatic cells in response to increased circulating levels of glucose and amino acids is essential for development, growth, apoptosis, and maintenance of glucose homeostasis, and it acts by regulating gene expression and carbohydrate, lipid, and protein metabolism. When the circulating concentrations of insulin are insufficient to regulate the above processes, insulin resistance occurs. Insulin resistance is one of the primary events in the development of MS, and it is thought to induce the biochemical, pathophysiological, and clinical sequelae that we know as MS, such as increases in free fatty acids (Figure 1).

Defects in the capacity to metabolize fatty acids and glucose are thought to play an important role in insulin resistance and MS. Accumulations of diacylglycerol, triacylglycerol, and free fatty acids in non-adipose tissues correlate strongly with insulin resistance. Gene expression modifications in adipose tissue are thought to be responsible for enhanced secretion of MS-related factors, and, in muscle tissue, decreased oxidative capacity and fat accumulation may also induce skeletal muscle insulin resistance.

Mitochondrial Damage and Type 2 Diabetes
Various studies point to generalized mitochondrial dysfunction in MS and reduction in electron transport chain capacities in type 2 diabetes patients along
Mitochondrial dysfunction has been linked to chronic insulin resistance, which results in preferential metabolism of fatty acids, reducing glucose utilization. This causes gradual pancreatic beta and other cell dysfunction due to fatty acid-stimulated changes in mitochondrial uncoupling proteins (UCPs), resulting in an uncoupling of mitochondrial respiration, reduced electron transport chain activity and ATP production, and increased production of ROS/RNS (Figure 1). This also results in fatigue.

When mitochondrial respiration functions properly, the amount of superoxide produced as a consequence of electron transport activity is effectively neutralized by endogenous antioxidants and antioxidant enzymes. In MS and associated diseases, excess ROS is produced. Superoxide produced continually as a byproduct of normal mitochondrial respiration can directly damage iron sulfur center-containing enzymes, be converted to hydrogen peroxide, and also react with nitrogen oxide to produce peroxynitrite, a very reactive nitrogen species (RNS). Fatty acids are particularly sensitive to ROS/RNS oxidation, resulting in the formation of lipid peroxides, which are cytotoxic and lead to free-radical damage, especially in MS and type 2 diabetics. In obese, insulin-resistant, pre-diabetic subjects, higher amounts of free fatty acids (and their peroxide derivatives) have been found. These are subject to peroxidative events that result in damage to mitochondrial components (Figure 1). Even before the diagnosis of MS or type 2 diabetes, the accumulation of oxidized fatty acids in mitochondria can result in progressive damage. For example, in elderly subjects, oxidized fatty acids accumulate in muscle mitochondria, and this is related to mitochondrial dysfunction.

Figure 1: Possible feedback mechanisms in the generation of excess ROS/RNS in MS, type 2 diabetes and other MS-associated diseases (modified from refs. 6 and 26).
The pathophysiology of type 2 diabetes is thought to occur as a consequence of persistent hyperglycemia, which causes (a) formation of advanced glycation end-products (AGEs, the products of nonenzymatic glycation and oxidation), their oxidation, and their interactions with cell receptors and cellular accumulation; (b) activation of various isoforms of protein kinase C; (c) induction of the polyol pathway; and (d) increased hexosamine pathway flux. These pathways are associated with elevated oxidative stress and over-production of superoxide (and thus ROS/RNS), but the link between hyperglycemia and increased mitochondrial superoxide production may not be mediated solely by the redox state of electron carriers.

Metabolic Syndrome, Atherosclerosis, and Coronary Heart Disease

Atherosclerosis involves chronic inflammatory damage to blood vessels due to lipid accumulation, inflammatory response, vessel cell death, and thrombosis, which can eventually result in the occlusion of heart and other tissue blood vessels. A main cause of coronary heart disease (CHD) and stroke, atherosclerosis is characterized by a number of risk factors, including abnormalities in lipoprotein subclasses, increases in vascular acute phase response proteins, changes in vascular endothelial cell adhesion molecules and certain cytokines. In the cardiovascular system, ROS/RNS play an essential physiological role in maintaining vascular integrity, and when they are in excess, they play a pathological role in cardiovascular dysfunction.

The process of atherosclerosis is thought to begin with abnormalities in lipoprotein subclasses, such as triglyceride-rich lipoproteins, their remnants, and smaller, denser low-density lipoproteins, hallmarks of MS. In MS, these proinflammatory lipoproteins and their remnants are susceptible to oxidation, and the presence of the oxidized lipoprotein subclasses is significantly associated with an abundance of macrophages in atherosclerotic lesions.

When they interact with the blood vessel wall, the oxidized lipoprotein subclasses are proinflammatory and can induce endothelial adhesion molecules, which attract monocytes. The adhesion and movement of adherent monocytes to subendothelial layers and their differentiation into inflammatory, ROS-producing macrophages is associated with atherosclerotic plaques. The unstable plaques can break off and form thrombi that can occlude blood vessels in the heart, resulting in myocardial infarction, ischemia, and heart failure.

Mitochondria in Aging and Fatigue

Fatigue or lack of energy occurs naturally during aging and is a common condition in many clinical diagnoses, including MS, type 2 diabetes, CHD, respiratory, musculoskeletal, and bowel conditions, as well as infections and cancer. The phenomenon of fatigue has been defined as a multidimensional sensation, and recently, attempts have been made to determine its extent and possible causes. Fatigue is related to reductions in the efficiency of mitochondrial energy systems and ROS/RNS damage to mitochondrial components can impair oxidative phosphorylation and cause fatigue. Mitochondrial redox molecules are indicative of excess oxidative stress and enzyme repair mechanisms, along with biosynthesis, cannot restore or replace enough of the ROS/RNS-damaged molecules to maintain mitochondrial function.

Disease and infection can also result in excess oxidative damage that exceeds the abilities of cellular systems to repair and replace damaged molecules.

In the case of fatigue and fatiguing illnesses, there is good evidence that oxidative damage impairs mitochondrial function. For example, in chronic fatigue syndrome (CFS) patients, there is evidence of ROS/RNS-mediated damage as well as the presence of oxidized blood markers that are indicative of excess oxidative stress. In addition, oxidative damage to DNA and membrane lesions...

Table 1: Effects of NTFactor, a dietary LRT supplement, on fatigue scores in patients with chronic fatigue, chronic fatigue syndrome, or fibromyalgia syndrome

<table>
<thead>
<tr>
<th>Subjects/patients Reference</th>
<th>Average age</th>
<th>Time on NTFactor</th>
<th>Piper Fatigue Scale fatiguelation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic fatigue</td>
<td>50.3</td>
<td>8 wks</td>
<td>40.5**</td>
</tr>
<tr>
<td>Chronic fatigue</td>
<td>68.9</td>
<td>12 wks</td>
<td>35.5*</td>
</tr>
<tr>
<td>CFS/FMS†</td>
<td>44.8</td>
<td>8 wks</td>
<td>43.1*</td>
</tr>
</tbody>
</table>

† From reference 43 with permission
*P<0.001; **P<0.0001, compared to data without supplement.
Data was collected using the Piper Fatigue Scale.
† Chronic Fatigue Syndrome and/or Fibromyalgia Syndrome
lipids has been found in muscle biopsy samples obtained from CFS patients as well as increases in antioxidant enzymes, such as glutathione peroxidase. CFS patients have sustained elevated levels of peroxynitrite, and this can result in lipid peroxidation, enzyme oxidation, and loss of mitochondrial function as well as changes in cytokine levels that exert a positive feedback on nitric oxide production. Although there are small molecules that counteract the excess oxidative capacity of ROS/RNS, such as glutathione and cysteine, these have been found at lower levels in CFS patients. Thus, similar to insulin resistance, MS, type 2 diabetes (and other MS-associated diseases), aging and fatigue are also linked to excess oxidative stress and overproduction of ROS/RNS, damage to mitochondrial electron transport systems, and reduced oxidative phosphorylation.

Use of Antioxidants to Prevent Excess ROS/RNS and Mitochondrial Damage

Preventing damage to cellular and mitochondrial membranes is important in preventing loss of electron transport function and cellular energy in MS and other chronic conditions. This can be accomplished, in part, by neutralizing excess ROS/RNS with various types of antioxidants or increasing free-radical scavenging systems. In MS and associated diseases, dietary supplementation has been used with low molecular weight antioxidants, some accessory molecules (such as the metal ion cofactors zinc, manganese, copper, vanadium, chromium, and selenium), and certain vitamins with some antioxidant properties (C, E, A, CoQ10). In addition to trace metal ions and vitamins, there are at least 40 micronutrients required in the human diet and aging increases the need to supplement these to prevent age-associated damage. Such supplementation, however, may not be sufficient to maintain cellular components free of ROS/RNS damage, and antioxidants alone cannot replace damaged cellular components.

The dietary use of antioxidants has also been shown to inhibit the age-associated decline in immune and other functions and prolong the lifespan of laboratory animals. In addition, antioxidant administration has certain neuroprotective effects, such as prevention of age-related hearing loss. Thus, some animal studies have shown that antioxidants can partially prevent age-associated changes in mitochondrial function.

Lipid Replacement

Use of Antioxidants to Prevent Excess ROS/RNS and Mitochondrial Damage

LIQUI-D3 provides cholecalciferol, a highly bioavailable form of Vitamin D, in a nutritious, olive oil base. Vitamin D has been the subject of intensive research which has greatly increased our understanding of vitamin D deficiency. This research has also expanded the range of therapeutic applications available for cholecalciferol. Physiologic requirements for vitamin D may be as high as 4000 IU per day.

LIQUI-D3
A Dietary Supplement Providing 2000 IU of Cholecalciferol per Drop*

1 Fl. Oz. (30 ml)

One Drop Provides:
- Calories: <0.5
- Calories from Fat: <0.5
- Total Fat: 0.026g
- Cholesterol: 0 mg
- Total Carbohydrates: 0 mg
- Protein: 0 mg
- Vitamin D (as cholecalciferol): 2000 IU

Other Ingredients: Olive Oil

Recommended Usage:
As a dietary supplement, one (1) drop daily or as directed by your health care professional.

Rx Vitamins
Physician Formulated
Scientifically Advanced Nutritional Supplements

For more information about our full product line or to place an order call:
1-800-Rx2-2222 or 914-592-2323
fax orders toll-free to 1-888-800-8068

visit us at www.rxvitamins.com • email: info@rxvitamins.com

* This statement has not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.
but it is not clear whether similar protection is afforded to humans. In MS-associated diseases, dietary antioxidants, trace metal ions, and vitamins have been proposed (separately or together) to alter the course of MS progression and inhibit the progression of MS-associated diseases. In most of these cases, the effects of antioxidants and other supplements were measured by changes in blood markers. For example, vitamin C has been shown to improve endothelial-dependent vasodilation in MS and type 2 diabetes, and excess vitamin C in combination with vitamin E may reduce the overall risk of CHD. However, despite the evidence for a link between excess oxidative stress in MS and associated diseases, a direct link between the intake of antioxidant nutrients, even in high concentrations, and the ability to prevent or delay MS disease progression has not been proven. For example, in the antioxidant prevention of CHD or its complications, only one-half (4/8) of the published clinical studies reviewed by Paolisso et al. showed positive results in terms of reducing markers associated with CHD. In type 2 diabetes patients, antioxidant supplementation reduced blood glucose or other markers of diabetes in five of seven studies examined. The variations in results were explained by differences in the design of the studies, differences in supplement dose(s), and duration of the trials as well as the criteria for beneficial results. Often follow-up on randomized, controlled clinical trials failed to show any significant benefit of antioxidants.

Mixtures of antioxidants, vitamins, trace minerals, and herbal extracts may be more effective in preventing early-stage progression of MS. Even in late-stage diseases like type 2 diabetes and CHD, mixtures of antioxidants and minerals were useful in controlling some signs, such as blood pressure. Blinded, controlled studies on antioxidant-vitamin-mineral-herbal products like the Akesis supplement (Akesis Scientific Inc.) have yet to be published, but preliminary studies indicate that such supplements may be beneficial in type 2 diabetes patients as measured by glycemic control or decreases in circulating oxidant markers. A newer version of this supplement mixture (InResponse®, Response Micronutrients, Inc.) has shown good results in animal studies. However, long-term studies will be necessary to see if nutritional antioxidant mixtures affect MS disease progression and the development of MS-associated diseases.

Replacement of Damaged Mitochondrial Membrane Components by Lipid Replacement Therapy
Lipid Replacement Therapy (LRT) plus antioxidants has been used to reverse ROS/RNS damage and increase mitochondrial function in certain clinical disorders involving loss of mitochondrial function. LRT should be useful for MS patients, because it replaces damaged lipids with undamaged lipids to ensure proper structure and function of cellular and mitochondrial membranes. It is usually combined with antioxidants, vitamins, and minerals to provide additional antioxidant protection. LRT plus antioxidants has proven to be an effective method to prevent ROS/RNS-associated changes in mitochondrial function. As discussed above, antioxidants alone may not completely eliminate or reverse ROS/RNS damage, and this is why LRT is an important addition to antioxidant dietary supplementation. One LRT supplement, NTFactor® (Nutritional Therapeutics Inc. and Researched Nutritionals), has been used successfully in animal and clinical studies. NTFactor’s encapsulated lipids are protected from oxidation in the gut and can be absorbed and transported into tissues without significant oxidative damage.

NTFactor has been used to reduce age-related mitochondrial damage in laboratory animals. For example, in aged rodents, Seidman et al. found that NTFactor prevented hearing loss associated with aging and shifted the threshold hearing from 35-40 dB in control, aged animals to 13-17 dB. They also found that NTFactor preserved cochlear mitochondrial function and prevented aging-related mitochondrial DNA deletions found in the cochlear. Thus, LRT was successful in preventing age-associated hearing loss and reducing mitochondrial damage.

In clinical studies, LRT has been used to reduce fatigue and protect mitochondrial membranes. Propax (Nutritional Therapeutics Inc., distributed by Researched Nutritionals), a dietary supplement containing NTFactor along with vitamins, minerals, and other nutrients, has been used in severely chronic fatigued patients, and it was found to reduce their fatigue approximately 40% within eight weeks. NTFactor in moderately and severely fatigued subjects was found to increase mitochondrial function and improve fatigue scores. For example, in patients with chronic fatigue, there was a 35.5% reduction in fatigue (P<0.001) with a proportionate increase in mitochondrial function (Table 1). The results indicated that in moderately to severely fatigued subjects, dietary LRT plus antioxidants can significantly improve and even restore mitochondrial function and significantly improve fatigue scores. Similar findings with LRT and antioxidants have been continued on page 119.
observed in CFS and fibromyalgia syndrome patients. The advantage of LRT plus antioxidants over antioxidant mixtures alone is that further oxidative damage is reduced, and damaged (oxidized) lipid components are gradually replaced, restoring function to cellular membranes.

Professor Garth L. Nicolson Department of Molecular Pathology The Institute for Molecular Medicine, 16371 Gothard St. H Huntington Beach, California 92647 714-596-6636; Fax: 714-596-3791 gnicolson@immed.org www.immed.org

The author has no financial interest in any products discussed in this article.

Notes
16. Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1999; 87:1620-1624.
Lipid Replacement

43. Nicolson GL. Lipid Replacement/Antioxidant Therapy as an adjunct supplement to reduce the adverse effects of cancer therapy and restore mitochondrial function. Pathol Oncol Res. 2005; 11:139-144.
47. Huang H, Manton KG. The role of oxidative damage in mitochondria during aging: A review. Front Biosci. 2004; 9:1100-1117.

Professor Garth L. Nicolson is the President, Chief Scientific Officer and Research Professor at the Institute for Molecular Medicine in Huntington Beach, California. Born in 1943 in Los Angeles, Dr. Nicolson received his BS in Chemistry from University of California at Los Angeles in 1965 and his PhD in Biochemistry and Cell Biology from the University of California at San Diego in 1970. He is currently Professor of Integrative Medicine at Capitol University of Integrative Medicine and a Conjoint Professor at the University of Newcastle (Australia). He was formally the David Bruton Jr. Chair in Cancer Research and Professor and Chairman of the Department of Tumor Biology at the University of Texas M. D. Anderson Cancer Center in Houston, and he was Professor of Internal Medicine and Professor of Pathology and Laboratory Medicine at the University of Texas Health Science at Houston. He was also Professor of Comparative Pathology at Texas A & M University. Professor Nicolson has published over 580 medical and scientific papers (including three Current Contents Citation Classics), edited 14 books, and served on the Editorial Boards of 20 medical and scientific journals. Professor Nicolson has won many awards, such as the Burroughs Wellcome Medal of the Royal Society of Medicine (United Kingdom), Stephen Paget Award of the Metastasis Research Society, the US National Cancer Institute Outstanding Investigator Award, and the Innovative Medicine Award of Canada. He is also a Colonel (Honorary) of the US Army Special Forces and a US Navy SEAL (Honorary) for his work on Armed Forces and veterans’ illnesses.
Copyright of Townsend Letter for Doctors & Patients is the property of Townsend Letter Group and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder’s express written permission. However, users may print, download, or email articles for individual use.