Organ Representation Areas of Different Internal Organs Localized on the Eyebrows & Eyelids by the Bi-Digital O-Ring Test Electromagnetic Resonance Phenomenon between 2 Identical Molecules – Part I: Detection of Increased Markers for Cancer & Heart Disease from White Hairs on the Eyebrows and Marked Decrease in the Markers after Taking One Optimal Dose of DHEA

Yoshiaki Omura M.D., Sc.D.
Director of Medical Research, Heart Disease, Research Foundation; Adjunct Prof. Dept. of Family & Community Medicine, New York Medical College; President, Int'l College of Acupuncture & Electro-Therapeutics; Prof., Dept. of Non-Orthodox Medicine, Ukrainian National Kiev Medical University

(Correspondence: Dr. Omura, 800 Riverside Drive (8-I), New York, N.Y. 10032, Tel: (1)(212) 781-6262; Fax: (1)(212)923-2279, email: icaet@yahoo.com)

(Received August 29, 2008; Accepted November 17, 2008)

ABSTRACT:
Organ representation areas of different internal organs were localized on the eyebrows for the first time in 2005 and localized on the surrounding tissue around the eye in 2008 using the Bi-Digital O-Ring Test (BDORT) electromagnetic resonance phenomenon between 2 identical tissue. The appearance of white hairs at specific organ representation areas of eyebrows represent an abnormal condition of the specific internal organ if the BDORT grading is (-)4 or a higher negative value. When one of these white hairs on the eyebrows is examined at any location along its entire length by the BDORT, if the grading is a very abnormal negative value of (-)6 or a higher (-) value, significantly abnormal conditions exist or existed at the corresponding time at the specific location of the hair. The heart representation area on the eyebrow is located nearest to the bridge of the nose on each side, where abnormally increased BNP (Brain Natriuretic Peptide) and cardiac Troponin I content is detected on the part of the white hair where the BDORT grading is (-)6 or a higher negative value. In the very abnormal part of the white hair representing the heart, Asbestos, TXB₂, and PLGF (Placental
Growth Factor) are markedly increased, while DHEA is markedly reduced. If Integrin α5β1 and Oncogene C-fos Ab2 are more than 5-10 ng (BDORT units), malignancy can be suspected. When one optimal dose of DHEA, 8.5 mg, was taken once, normal body tissue telomere was increased from less than 1 ng (during which time the patient experienced extreme tiredness and frequent urination), to 525 ng (BDORT units), not only did severe tiredness & frequent urination completely disappear, but also the white hair representing the left ventricle changed to black hair, and the semi-transparent white hair representing the kidney changed to a non-transparent white hair, with significant decreases in the abnormal parameters. Thus, it is possible to detect unrecognized serious heart conditions or early-stage cancer that are currently present or that were present in the recent past by examining the white hairs of the eyebrows, and these diseases can be improved by one optimal dose of DHEA or Astragalus.

Key Words: Eyebrow; Eyelids; White hair; BNP (Brain Natriuretic Peptide); Cardiac Troponin I; PLGF (Placental Growth Factor); TXB2 (Thromboxane B2); DHEA; Astragalus; Cancer; Integrin α5β1; Oncogene C-fos Ab2; Telomere; Asbestos; Organ representation areas of heart and kidney.

INTRODUCTION

For a few months after June 2004, the author had been suffering from extreme stress as a victim of a middle-aged man (Mr. A. K.) who had unsuccessfully tried to extort money by false claims from the author. This man had earlier written a small fiction book in which he described how his main character extorted money from a Navy admiral who was his superior. As a consequence of this strong stress, and after an exhausting air trip during which the author lost 2 suitcases with all his lecture and research slides, and also after eating a dinner with fatty food in a Vietnamese restaurant in Paris, the author developed sudden, severe upper abdominal pain while he was giving a lecture in Paris the following morning. The pain was found to be due to inflammation of the gallbladder. During periods of great stress, eating fatty food is a frequent cause of cholecystitis. A few days after this event, he managed to give an already-scheduled 3-day seminar and workshop at the Max Planck Institute in Berlin in spite of the lingering abdominal pain by reducing the infection with anti-viral and anti-bacterial agents. Immediately after the conference, he was examined by a German professor who is an expert in the gallbladder. He suggested that the author should have a surgical excision of the gallbladder as soon as possible, to avoid the potential danger of the gallbladder rupturing. Following the German professor’s advice and due to persistent abdominal discomfort, extreme tiredness all day, and a complete lack of energy, the author had cholecystectomy at a major Japanese hospital—St. Mary’s Hospital in Kurume city. The experienced surgeon found strong adhesion of the gall
bladder to the surface of the liver. To prevent hemorrhage, he burned all the adhesive tissue of both the gall bladder and liver by electro-cautery.

For 2 weeks after the surgery, the author was in a hospital bed, experiencing frequent, severe sweating during the nights. On the morning of the day the author was discharged in late July 2004, he saw his face closely in a mirror for the first time after admission while shaving. He noticed that there were several white hairs growing much longer than the rest of the normal black hairs of the eyebrows. He was not sure whether these long white hairs were there before his admission to the hospital or not. When the author pulled out the longest white hairs and examined if any organs’ microscope tissue slides could produce a strong electromagnetic field resonance with these white hairs, he found that each hair produced strong resonance with only one internal organ’s tissue microscope slides corresponding to the gallbladder, liver, kidneys, pancreas, ascending colon, adrenal gland, and the right and left ventricles of the heart [1-51]. In addition, all the white hairs had various degrees of Bi-Digital O-Ring Test negative (-) grading, while the black hairs of the eyebrow showed a positive grading [26, 52-54]. After this finding, the author realized that these abnormal white hairs at specific locations on the eyebrows not only represented specific internal organs with medical problems, but also represented the degree and nature of the abnormality. And at that point, the author hypothesized that each internal organ in the whole body might be represented at different locations on the eyebrow.

No published articles on hair on the eyebrow representing specific internal organs could be found on an internet search. Some papers involved a microscopic examination of the abnormal shape of the hair shaft of a patient with Netherton’s syndrome [55-57]. Patients with Netherton’s syndrome have a tendency to have fragile and spike hair, a condition called trichorrhexis invaginata. All body hair, including eyebrows and eyelashes, are affected. Microscopic examination of the hair reveals bamboo-like node formation on the shaft of the hair. The usual cutaneous manifestation of Netherton’s syndrome is ichthyosis linearis circumflexa (a distinctive skin condition of generalized hyperkeratosis and polycyclic and serpiginous erythematous plaques with a characteristic, migratory, double-edged scale at the margins). Trichorrhexis invaginata sometimes will not show up until 6 months of age, and many patients have allergies to nuts. The usual cutaneous manifestation of Netherton’s syndrome is ichthyosis linearis circumflexa. This condition is usually associated with a mutation of the gene SPINK5, which exists on the 5th chromosome, but the condition has very little relationship with each eyebrow hair representing specific internal organs.

The other article investigates the association between EV-HPV DNA (Epidermodysplasia verruciformis-human papillomavirus DNA) in hairs plucked from eyebrows and the occurrence of non-melanoma skin cancer (NMSC) [58]. Many articles have been published on white hair on the head, though the specific location of these white hairs often was not mentioned. Some articles reported the relationship between a bald head and excessive hair on the chest wall, and
their possible relationship with cardiovascular disease, but these did not address eyebrow hair [59-81]. However, none of these studies describe the specific representation of internal organs at different parts of the eyebrows. In essence, we could not find any earlier work related to our present study. Consequently, the author had to map all the organs on the eyebrow after extensive research. This article represents the first organ representation map of the eyebrows, as well as the upper and lower eyelids. It includes an evaluation of the white hair corresponding to the left ventricle on the eyebrow: part of this white hair indicates the presence of a potentially serious heart problem. This article also includes an evaluation of the white hair on the eyebrow which indicates an early stage of adenocarcinoma of the kidney. The abnormal parameters of these 2 white eyebrow hairs became almost normal after increasing abnormally reduced normal cell tissue telomere from less than 1 yg (= 10^{-24} g) to 500–525 ng (BDORT units) by taking one optimal dose of DHEA [82, 83]. Severe tiredness and frequent urination disappeared within 1 hour, and the effect of this 1 optimal dose lasted about 11 months, until the body was exposed to very cold temperatures for several hours, which irreversibly reduced normal cell telomere to less than 1 yg. The author then had to take a second optimal dose of DHEA or Astragalus.

MATERIALS AND METHODS

A 4-year-long evaluation was made of the black and white eyebrow hairs of the author, a 73 year-old, male physician of Japanese origin with body weight of about 50 kg, height of 162 cm, heart rate of 70/min, respiratory rate of 9/min, and blood pressure of 145-85 mm/Hg at the time this article was completed. When the white hairs were short, it was difficult to make an exact study without removing them. So instead of pulling out the remaining white hairs, the author decided, after his hospital discharge near the end of July 2004, to allow them to grow to a sufficiently long length. Only a few white hairs grew longer, while most of the white hairs remained about the same length. He examined them repeatedly during more than a 3-year period of time. Few of the abnormal white hairs on the eyebrows were found to grow much faster than the rest of the normal black eyebrow hairs or white eyebrow hairs. The author took digital photographs during this time, since our previous studies have indicated that photographs contain identical information to information taken directly from the actual substance on the human body surface (in this case, white hairs from the eyebrow) [26, 52-54].

The author during this time had to trim the very long white hairs shorter because they had grown too long and sometimes the tips of the hairs entered on the surface of the eye and irritated the eye, but he did not remove the white hairs and their roots. However, many of the very long white hairs of the eyebrow came out while washing the face. During this period of time, the white hairs always had a Bi-Digital O-Ring Test negative grading (anywhere between (-)2 and (-)8), while the black hairs always had a positive grading (from anywhere between +1 and +7) [1-51]. Since the white hairs seem to have information on their abnormality, depending upon the location of
the same hairs (whether it is the tip, the middle, or near the hair root), the author therefore
examined at least 3-6 locations of the hairs and semi-quantitatively measured the following:

1. For detection of cancer and other malignancies, from the white hair representing the kidney, the following 5 basic parameters were examined:
 1) Integrin $\alpha_5\beta_1$ or Oncogene C-fos Ab2
 2) Asbestos
 3) TXB$_2$ (Thromboxane B$_2$)
 4) DHEA (De-Hydro-Epi-Androsterone)
 5) PLGF (Placental Growth Factor)

2. For detection of cardiovascular diseases from white hairs representing the left ventricle and right ventricle, the following 5 basic parameters were examined:
 1) BNP (Brain Natriuretic Peptide)
 2) Cardiac Troponin I
 3) TXB$_2$
 4) PLGF
 5) DHEA

All of these molecules' reference control substances, with their known exact amounts permanently embedded in chemically inactive elastic transparent material in the shape of a microscope tissue slide, were obtained from O-Ring Test Life Science Institute, in Kurume City, Japan. Measurements were made both by directly applying the same gold-plated, fine electrode (which was a total length of 12.7 cm; the first 11.2 cm had a diameter of about 1mm, while the 1.5 cm at the end including the tip had a smaller diameter of 0.5mm), which was made of a base metal of brass, on the white or black hairs directly, and by examination using a photographed copy of the hairs, but the results were almost the same. The reason why TXB$_2$ and PLGF are used for detection of both myocardial disease and cancer is that our previous study indicated that the amounts of both TXB$_2$ and PLGF are always increased when there is a circulatory disturbance and also are increased in cancer tissue where localized circulatory disturbance exists. Placental Growth Factor is also often increased in both cancer and myocardial diseases [84].

Although we examined most of the white hairs on the eyebrows, we paid special attention in this article to the 2 longest hairs, one of which was a completely white color, while the other long hair was partially white near the tip and the rest black. One of these white hairs was on the left eyebrow and was found to represent the kidney, since the kidney tissue slide is the only one that produced strong resonance with this one entire hair. This kidney-representing white hair was 3.25 cm long (with the top part semi-transparent white and the rest non-transparent white), while most hairs on the eyebrow were between 0.5 - 1 cm. The other long hair was also on the left eyebrow, and was 3.75 cm long and represented the left ventricle, but was only white at the top
1.1 cm of the hair. This top 1.1 cm of the hair was white, while most of the remaining 2.64 cm from the root were black, with the exception of a few mm of light black transitional hair between the white and black portion of the hair. When a photograph was taken from the front of the face, the long black part of the hair was difficult to see; but when it was photographed from the side at an angle, the whole length of the hair became visible.

We measured parameters strongly associated with cancer, such as Integrin α5β1, Oncogene C-fos Ab2, Asbestos, TXB2 (Thromboxane B2), and PLGF (Placental Growth Factor), as well as other generally cancer-related parameters, such as Telomere and a large (−) BDORT grading, for most of the organs other than the heart and small intestine where cancer is extremely rare [26, 52-54]. Our previous study on human cancer tissue indicated that in the cancer tissue itself, telomere is much higher than the telomere of the surrounding normal tissue, but we did not have the slightest idea what would be the difference in the amount of telomere between the normal black hairs and cancer-corresponding areas of the hair. Preliminary studies with white eyebrow hair indicated that the difference in the amount of telomere was not as significant as in cancer tissue. In the human, Integrin α5β1 and Oncogene C-fos Ab2 are definitely one of the most predictable parameters for cancer. If both of these parameters are more than 5-10 ng (BDORT units), there is always malignancy in the vicinity. Therefore, we wanted to also find out what would be the diagnostically significant amount of these molecules in the white hair. This relationship was shown in the analysis of these 2 selected hairs, which happened to be the longest hairs.

In the case of the hair on the left eyebrow representing the left ventricle, there was a very interesting phenomenon. The change of the white hair representing the left ventricle to black hair representing the same left ventricle only took place shortly after the author increased his abnormally reduced normal cell telomere of less than 25 ng – 1 yg (=10^{-24} g) to over 500 ng (BDORT units) by taking one optimal dose of DHEA (or one optimal dose of Astragalus), which resulted in the white hair changing to black hair, with disappearance of extreme tiredness and frequent urination [82, 83].

RESULTS

The upper part of Figure 1 indicates the organ representation areas on the eyebrow mapped for the first time through the original research of this author in 2005. The entire Figure 1 is the organ representation areas of the eyebrow and surrounding tissue including the upper eyelid and lower eyelid mapping which was completed in 2008, originally based on the author's left eyebrow and surrounding tissues, particularly upper and lower eyelids. It is also incorporated with findings from many other subjects, both men and women, which had some individual variations. The minor variation of organ representation areas on the right and left eyebrows also exist in most of the individuals examined. Immediately above the eyebrow, the areas outlined by
Organ Representation Areas of the Left Eyebrow & Surrounding Areas, Including the Upper & Lower Eyelids, Localized by the Use of Bi-Digital O-Ring Test Resonance Phenomenon

Figure 1: The first organ representation areas of the eyebrow were successfully mapped in 2005, and subsequently, the organ representation areas around the eye were completed together with the eyebrow in 2008. The 3 blue colored areas above the eyebrow, which are surrounded by a dotted line, are located at the hairless space between the upper border of the eyebrow and lower border of the forehead, i.e. 1) Forehead, 2) Parietal and Temporal areas of the head, 3) Occipital area of the head. Except for these dotted areas, the white hairless area above the eyebrow at the forehead represents the liver.
the dotted line and described on the bottom of the forehead as parietal, temporal, and occipital, although there are no eyebrow hairs, represent half of the brain on the same side, while the rest of the forehead represents mainly the liver. This organ representation area map was found to be very useful for quick screening and diagnosis, as well as safe, effective treatment using Selective Drug Uptake Enhancement Method [33, 85-89].

1. General analysis of the white hair and black hair on the eyebrows:

 Figure 2 shows typical examples of white hairs, with the corresponding internal organs' names indicated. As can be seen in Figure 2, the white hairs were represented by the following different organs: left ventricle, right ventricle, thyroid gland, lung, adrenal gland, pancreas, kidney, and ascending colon. Using this picture, when the Bi-Digital O-Ring Test grading was evaluated for white hairs and black hairs, the following conclusions were obtained:

 1) Common findings concerning white and black hair of eyebrows.
 Each hair represents one specific internal organ and each internal organ is represented in a specific area on the eyebrows.

 2) Difference found in BDORT grading between black hair and white hair of eyebrows
 Analysis of the comparison between the white hairs and black hairs of the eyebrows by

Figure 2: Typical examples of white hairs, with the corresponding internal organs' names indicated. The arrows are directed towards the root of the white hairs at skin level. Each hair, regardless of whether it is black or white, can produce resonance with one specific internal organ along its entire length.
simple, quick Bi-Digital O-Ring Test (BDORT) analysis of grading led to the following general findings:

- All black hairs had (+) BDORT grading of +1 ~ +7, which is normal, and all white hairs had (-) BDORT grading of (-)2 ~ (-)8. (-)1 and (-)2 are within normal limits, and (-)6 or a higher negative value is very abnormal.
- The amounts of Integrin α5β1 and Oncogene C-fos Ab2 of normal black hairs on the eyebrows were less than 1 yg (10^{-24} g) (BDORT units), which is normal.
- The amounts of Integrin α5β1 and Oncogene C-fos Ab2 vary depending upon the particular location along the entire length of the white hair being examined, and are most abnormally increased at the part of the white hair where the BDORT grading is (-)6 or a higher negative value. Potential malignancy should suspected if Integrin α5β1 and Oncogene C-fos Ab2 are more than 5~10 ng (BDORT units).

2. Analysis of pertinent biochemical parameters using BDORT resonance phenomenon between 2 identical molecules for detection of cancer, using white hair representing kidney at left eyebrow.

For more detailed analysis of the white hair on the eyebrow, the author selected the 2 longest hairs, one of which represents the kidney on the left eyebrow. The entire length (3.25 cm) of this hair was white, but the oldest 1/5 (nearest to the tip of the hair) was semi-transparent. This hair was selected to see if there was any significant pathological findings along the same white hair, particularly indications of malignancy. Our previous studies in the human body indicated that a BDORT grading will have a much larger (-) value than (-)4 in the presence of malignancy, and that the following findings always existed:

1. Integrin α5β1 of more than 10 ng,
2. Oncogene C-fos Ab2 of more than 10 ng,
3. Increased asbestos of 0.15 mg or higher, [49, 90-92]
4. There is a strong resonance between identical microscope slide of tumor and the tumor that exists in the patient.

The result of the analysis of white hair representing kidney is shown in Figure 3. The long white hair with a total length of 3.25 cm is magnified more than 2 times so that it can be seen more easily. Although the entire length has a white color, about 1/5 of the hair, at the tip, is semi-transparent, and the diameter seems to be slightly thinner than the rest of the distinctive, non-transparent white hair. When the entire hair was evaluated with the Bi-Digital O-Ring Test, the worst (-) grading was found to be (-)8, which was followed by a gradual improvement of (-)5, (-)4, (-)3, and (-)2. For the part of the hair with the worst BDORT grading of (-)8, corresponding changes in the biochemical parameters measured were also the worst and highly pathological, and indicated an early stage of Adenocarcinoma of the kidney. These values are shown in Figure 3 and summarized in Table 1.
Figure 3: Analysis of white hair on the left eyebrow along its entire length, between the tip of the semi-transparent white hair to the rest of the non-transparent white hair up to skin level. This white hair represents the kidney (only the microscope slide of the kidney produced strong resonance with this hair) at the left eyebrow. The non-transparent white hair appeared after taking one optimal dose of DHEA (which lasted about 11 months) because of severe fatigue with very low normal cell telomere. Kidney representation area at medial half of lower eyelid bag formation had one localized abnormal area (circled) corresponding to this abnormal white hair.
Measurement of DHEA, BNP, PLGF, Asbestos, Integrin $\alpha_{5}\beta_{1}$ & Oncogene C-fos Ab2, and BDORT grading of 3.25 cm-long white hair on left eyebrow representing the kidney.

TABLE 1

2A. **Analysis of the long, white hair on the left eyebrow, representing the kidney:**

This long white hair on the left eyebrow, representing the kidney, was 3.25 cm long, with the top part semi-transparent white and the rest non-transparent white. This hair had different amounts of Integrin $\alpha_{5}\beta_{1}$ & Oncogene C-fos Ab2 along its entire length. When this hair was divided into 5 parts, the second 1/5 of the hair (from the tip) had a BDORT grading of (-)8. At this location at the end of the semi-transparent white part of the hair, circulatory disturbance was at a maximum compared with the rest of the same hair; the amount of TXB$_2$ was 155 ng; and the largest amounts (for the entire hair) of PLGF (Placental Growth Factor), at 124 ng, and Asbestos, at 0.15 mg, were found. Our previous studies indicated that Asbestos is always 0.15 mg or higher when various cancer and malignant tumors are present [49, 90-92]. Also, both Integrin $\alpha_{5}\beta_{1}$ and Oncogene C-fos Ab2 were increased to 50 ng; if their amounts are over 5-10 ng in the rest of the body tissue, this correlates with the presence of malignancy. At the corresponding period, the author suffered from extreme tiredness and frequent urination without any genito-urinary infection, and his abnormal cell telomere value was fluctuating between 25 ng and 1 yg (=10$^{-24}$ g).

At the location of the white hair where the BDORT grading was (-)6, the amounts of Integrin $\alpha_{5}\beta_{1}$ and Oncogene C-fos Ab2 were 10 ng, which indicates the presence of early malignancy; the amount TXB$_2$ was 105 ng (compared with a normal value of less than 5 ng), indicating the presence of moderate circulatory disturbance; the amount of PLGF was 120 ng (compared with a normal value of less than 1 ng); and the amount of DHEA was less than 2 ng, which indicates the presence of malignancy, since often less than 5 ng indicates malignancy [82, 83].

<table>
<thead>
<tr>
<th>Color & Appearance</th>
<th>Tip of hair</th>
<th>One optimal dose of DHEA</th>
<th>Near root (at skin level)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st 1/5</td>
<td>2nd 1/5</td>
<td>3rd 1/5</td>
</tr>
<tr>
<td></td>
<td>5th 1/5</td>
<td>TXB$_2$</td>
<td>DHEA</td>
</tr>
<tr>
<td></td>
<td>10 ng</td>
<td>10 ng</td>
<td>130 ng</td>
</tr>
<tr>
<td></td>
<td>12 ng</td>
<td>0.5 ng</td>
<td>100 ng</td>
</tr>
<tr>
<td></td>
<td>15 ng</td>
<td>0.5 ng</td>
<td>65 ng</td>
</tr>
<tr>
<td></td>
<td>15 ng</td>
<td>0.5 ng</td>
<td>55 ng</td>
</tr>
<tr>
<td></td>
<td>155 ng</td>
<td>0.5 ng</td>
<td>0.5 ng</td>
</tr>
<tr>
<td></td>
<td>105 ng</td>
<td>0.5 ng</td>
<td>65 ng</td>
</tr>
<tr>
<td></td>
<td>15 ng</td>
<td>mg</td>
<td>mg</td>
</tr>
<tr>
<td></td>
<td>0.001 mg</td>
<td>mg</td>
<td>0.001 mg</td>
</tr>
<tr>
<td></td>
<td>0.001 mg</td>
<td>mg</td>
<td>0.001 mg</td>
</tr>
<tr>
<td></td>
<td>0.020 mg</td>
<td>ng</td>
<td>0.025 mg</td>
</tr>
<tr>
<td></td>
<td>0.025 mg</td>
<td>ng</td>
<td>0.025 mg</td>
</tr>
<tr>
<td></td>
<td>0.025 mg</td>
<td>ng</td>
<td>0.025 mg</td>
</tr>
<tr>
<td></td>
<td>0.015 mg</td>
<td>mg</td>
<td>0.015 mg</td>
</tr>
<tr>
<td></td>
<td>0.015 mg</td>
<td>mg</td>
<td>0.015 mg</td>
</tr>
<tr>
<td></td>
<td>10 mg</td>
<td>mg</td>
<td>10 mg</td>
</tr>
<tr>
<td></td>
<td>10 ng</td>
<td>mg</td>
<td>10 ng</td>
</tr>
<tr>
<td></td>
<td>15 ng</td>
<td>mg</td>
<td>15 mg</td>
</tr>
<tr>
<td></td>
<td>Non-transparent, thick white hair</td>
<td>Semi-transparent white</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4: Outline of very small imaged left kidney by resonance phenomenon between normal kidney tissue glass slide and L-kidney inside of body. Please note that the small red circular area within the imaged left kidney, near the left lateral side of the imaged kidney, was the only abnormal area with a BDORT grading of (-)2, with 5 parameters that are similar to the part of the white hair representing the kidney near the skin and one small abnormal area of the kidney representation area. No abnormal area other than this location can be found. Please note that this unusually reduced outline of kidney imaging was observed when the normal cell telomere, Ach (Acetylcholine), and DHEA were markedly reduced, while TXB₂ and PLGF were abnormally increased at the area imaged around the L-kidney, while around the R-kidney these measurements were within normal limits. However, the reduced outline of the left kidney is proportional to its actual shape. The outline of the R-kidney had a size larger than actual size with normal shape, where DHEA, Telomere, TXB₂, PLGF, and Ach were within normal limits.
Therefore, the author made an examination with a cancer screening kit consisting of about 50 different cancer tissue slides. Among them, adenocarcinoma of the kidney was the only one cancer slide that produced (-)4 resonance. No other microscope slides of cancer tissues produced resonance. Therefore, the author suspected that there was the possibility of a very early stage of adenocarcinoma of the kidneys, specifically in the left kidney, in the recent past.

The last 1/5 length of white hair (from the root of the hair), however, was found to be close to normal range, with both Integrin αβ1 and Oncogene C-fos Ab2 at 0.05 ng and Asbestos at 0.001 mg, which is significantly reduced. This finding suggests that in the recent past, an early stage of cancer existed in a very small area of the L-kidney, but at the time this photograph was taken, this hair was close to normal, although Asbestos is reduced but still slightly high.

This sudden change from a very early stage of cancer at BDORT grading of (-)6 and (-)8 to a relatively normal state of (-)4 corresponded to the increase of the author’s normal cell telomere from less than 5 ng ~ 1 yg to over 500 ng, which was achieved by taking 1 optimal dose of DHEA (8.5 mg) [82, 83]. Shortly after taking this one optimal dose of DHEA (8.5 mg), all of the author’s symptoms disappeared within 1 hour, he regained normal strength, and he was able to resume normal daily activity. Many people noticed that some of his hairs, which were mostly white, had begun to change a dark color, and this was particularly distinctive on the occipital area of the head. No significant visible change in the hair of the eyebrows, however, took place except that this white eyebrow hair, which before taking 1 optimal dose of DHEA had been not only white but also semi-transparent, then changed to non-transparent, thicker white hair after the 1 optimal dose of DHEA.

Within 3 weeks, the BDORT (-) grading of the semi-transparent white hair reduced from (-)8 to (-)4, and the amounts of both Integrin αβ1 and Oncogene C-fos Ab2 reduced to a normal value of 0.025 ng, Asbestos reduced to a normal value of 0.001 mg, PLGF reduced from 124 ng to 0.5 ng, and TXB2 reduced from 155 ng to 15 ng. Since both the amounts of Integrin αβ1 and Oncogene C-fos Ab2 reduced to a normal value of 0.025 mg, one can consider that an early stage of adenocarcinoma of the kidney had been completely inhibited. At the most recent part (i.e. the most recent growth) of the white hair (the 1/5 of the hair nearest to skin), the BDORT grading was (-)2, which is within normal limits; the amount of DHEA was 130 ng, a normal value for a healthy young adult; the amount of PLGF was a normal value of 0.5 ng; the amounts of both Integrin αβ1 and Oncogene C-fos Ab2 were a normal value of 0.02 ng; and the amount of Asbestos was a normal value of 0.001 mg.

Therefore, one can presume that the early adenocarcinoma of the kidney may no longer exist, since this most recent part of the thick non-transparent white hair has continued to
exist for 3 years after taking the first optimal dose of DHEA (8.5 mg). The second optimal dose of DHEA was taken about 11 months after the first dose and then 30 grams of raw bitter-melon were taken every 3 hours for 3 months (except while sleeping), and then finally one optimal dose of Astragalus was taken.

2B. **Analysis of long single hair, with upper part white hair and lower black hair (from root), which represents left ventricle located at the left eyebrow.**

In Figure 5, another very long hair with its upper part white and lower part black, representing the left ventricle, can be seen on the left eyebrow. This hair was 3.75 cm long, but was only white at the top 1.1 cm of the hair. Most of the remaining 2.64 cm from the root were black, with the exception of a few mm of transitional light black hair between the white and black parts of the hair. The measurements are shown below the actual photograph of the left eye and this very long hair. Since these measurements on the photograph of Figure 5 are difficult to read, these findings are summarized in Table 2.

As can be seen from the results of the measurements, the BDORT grading was (-)5 near the tip of the white hair. The amount of DHEA at this location was measured to be 15 ng, which is low compared with ideal value of about 130 ng [82, 83]; the amount of BNP was 5 ng; the amount of PLGF was 70 ng, which is considerably high compared with its normal value of less than 1–2 ng; the amount of Cardiac Troponin I was 7 ng, which is considerably abnormal compared with a normal value of less than 2 ng; the amount of Asbestos was 0.005 mg, which is slightly high but within normal limits; and the amount of Thromboxane B2 was 12 ng, compared to a normal value of less than 5 ng, which indicates a slight circulatory disturbance.

Near the end of the white portion of the hair, before the black portion of the hair, the BDORT grading was (-)8. The amount of DHEA at this location was measured to be 15 ng, which is considered to be rather low, but which is no different from the tip of the hair. However, the amount of BNP was further increased to the more abnormal value of 7.5 ng, which may contribute to frequent urination without genital urinary system infection. The amount of PLGF was 110 ng, which is an extremely high value, indicating either severe circulatory disturbance or malignancy—but in the heart there is no malignancy, so only circulatory disturbance can be considered. Cardiac Troponin I was 10 ng, which is a significantly high, abnormal value, since the amount of Cardiac Troponin I in many patients who recently have had myocardial infarction is often 15 ng or higher, whereas the normal value is less than 2 ng. This indicates the presence of a progressing abnormal myocardial condition, which could reach 15 ng in the future with the risk of myocardial infarction. The amount of Asbestos was increased to 0.03 mg, which is a higher than normal value, but not pathologically high. The amount of TXB2 was found to be 120 ng, which indicates significant circulatory disturbances, since the normal amount is less than 5 ng.
Single hair with upper part white and lower part black (from root), which represents left ventricle located at left eyebrow.

Figure 5: Single, very long hair of 3.75 cm; the upper part (1.1 cm) was white hair and most of the remaining lower part was black hair, with a few mm of transitional light black hair representing the L-ventricle and arising from the upper end of the L-ventricular representation area of the L-eyebrow. Please note that this long hair emerged from a hairless, slightly whitish, round area of the skin at the upper end of the L-ventricular representation area of the L-eyebrow. The possibility that this hairless, less-pigmented, slightly whitish area may have been providing a necessary nutritional supply for extra-rapid growth of this one long, black portion of the hair cannot be excluded. Also note on the right eyebrow, at the upper end of the L-ventricular representation area, one relatively long white hair representing the L-ventricle. Along its entire length, Cardiac Troponin I was found to be at a relatively high value of 7 ng, and DHEA remained at a relatively low level of 15 ng. This indicates that this white hair was not significantly influenced by the intake of 1 optimal dose of DHEA for a variety of factors to be investigated in the future.
During this period, the patient suffered from extreme tiredness and frequent urination without genital urinary system infection, and his normal tissue cell telomere varied between 25 ng and 1 ng. One optimal dose of DHEA (8.5 mg) was then taken orally just once [82, 83], and most of the symptoms disappeared within a few hours. BDORT grading at the junction between the white part and black part of the hair changed rapidly to 0. Then, at the location of the black hair indicated as +1, the amount of DHEA increased to 75 ng, which is a significant improvement for a 73 year-old man. The amount of BNP was reduced to 1.5 ng, which is within normal limits. The amount of PLGF was reduced to 1.5 ng, which is slightly high but close to the normal limit of 1 ng. The amount of Cardiac Troponin I was reduced to 5 ng, which is still slightly high compared to the normal value of less than 2 ng. The amount of Asbestos had reduced to 0.025 mg, and the amount of TXB2 had reduced to 12 ng, compared to its maximum abnormal value of 120 ng at the end of the white hair where the BDORT grading was the worst at (-)8. The change in the BDORT grading from (-)8 to 0 appeared after taking one optimal dose of DHEA (8.5 mg). Extreme tiredness and frequent urination disappeared within 1 hour, as the BDORT grading gradually changed to (+)1, (+)5, and then (+)6.

For the black portion of the hair nearest the skin (i.e. close to the root of the hair), the BDORT grading was +6 and the amount of DHEA was 100 ng, which is an excellent value, although the maximum normal value is about 130 ng [82, 83]. The amount of BNP was 1 ng, which is within normal limits, and the amount of PLGF was 0.5 ng, which is within normal limits. The amount of Cardiac Troponin I was 1 ng, which is completely within normal limits. The amount of Asbestos was the same at 0.025 mg, which is slightly higher than normal, but not at a level indicating malignancy or other serious medical conditions. The amount of TXB2 was 0.5 ng, which is completely within normal limits. Thus, it is possible to state that taking one optimal dose of DHEA reversed the unrecognized potential danger of the significantly increased amount of Cardiac Troponin I from developing into myocardial infarction to normal value of 1 ng. As long as the amount of DHEA in the black hair representing the left ventricle is more than 75 ng, the improvement remains.

<table>
<thead>
<tr>
<th>Near root (at skin level)</th>
<th>Tip of hair</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHEA</td>
<td>100 ng</td>
</tr>
<tr>
<td>BNP</td>
<td>1.0 ng</td>
</tr>
<tr>
<td>PLGF</td>
<td>0.5 ng</td>
</tr>
<tr>
<td>Cardiac Troponin I</td>
<td>1 ng</td>
</tr>
<tr>
<td>Asbestos</td>
<td>0.025 mg</td>
</tr>
<tr>
<td>TXB2</td>
<td>0.5 ng</td>
</tr>
<tr>
<td>BDORT grading</td>
<td>+6</td>
</tr>
<tr>
<td>Color of hair</td>
<td>Black hair</td>
</tr>
</tbody>
</table>

TABLE 2
DISCUSSION

The author examined these typical examples of white hairs from the eyebrows in early 2008. Originally, the following parameters were measured to compare normal black hairs and white hairs. Measurements were performed along the entire length of each hair, and recorded for

Figure 6: Imaging of the outline of the left ventricle using BDORT resonance phenomenon between microscope left ventricular tissue glass slide and left ventricle inside of the chest. When DHEA around the left ventricle is 120 ng, DHEA at the left ventricle is 110 ng, and TXB₂ is 0.5 ng, the size of the imaged outline of the left ventricle is almost the same as the actual left ventricle. The small round area of the left ventricle near the nipple is the only area where the BDORT grading is (-)1 with DHEA of 21 ng and TXB₂ of 2 ng, which is considered to be within normal limits. PLGF for these 3 areas is 0.5 ng, which is within normal limits.
Figure 7: As can be seen in Figure 6, a slightly abnormal BDORT grading of (-)1 for the entire left ventricle is located at the small area near the nipple and ECG chest lead locations of V4 and V5. ECG recordings of V4, V5, and V6 showed a normal ECG, but among them, V5 had the maximum value of minor abnormality. The “Vulnerable Period for Ventricular Fibrillation,” which is at the descending part of the T-wave, produced strong resonance with a microscope tissue slide of Purkinje Fibers of the heart. At this location, Cardiac Troponin I was 1 ng, TXB2 was 1 ng, Asbestos was 0.005 mg; all these 3 values are within normal limits. PLGF, however, was mildly abnormal at 36 ng, compared with the usual normal range of less than 1 or 2 ng (BDORT units). We found that each component of the ECG recording of the P-wave, the QRS-wave ST segment, and the T-wave represent one specific part of heart tissue. Also, multiple Purkinje Fiber representation areas were found in all ECG recordings. Therefore, the “Vulnerable Period for Ventricular Fibrillation” represents the Purkinje Fibers of the heart, and this area had maximum abnormality, particularly for PLGF. Therefore, this can be used as a new method for detecting abnormalities that current, standard ECG interpretation techniques cannot find. Further study on this subject will be reported in future publications.
at least several locations when the hair was long enough:

1. Bi-Digital O-Ring Test grading
2. Telomere (in BDORT units)
3. Integrin \(\alpha_5 \beta_1 \) and Oncogene C-fos Ab2 (in BDORT units)
4. Abestos (in BDORT units)
5. Cardiac Troponin I (in BDORT units)
6. BNP (Brain Natriuretic Peptide) (in BDORT units)
7. TXB\(_2\) (Thromboxane B\(_2\)) (in BDORT units)

From the above analysis, it becomes evident that usually black hairs are normal but that white hairs can be pathological if the BDORT grading is (-6) or a higher negative value. Once a high negative BDORT grading is identified at a specific location of a white hair, and if cancer and other types of malignancy are suspected, Integrin \(\alpha_5 \beta_1 \) and Oncogene C-fos Ab2 measurement can demonstrate the presence of malignancy if these cancer-related parameters are 5 - 10 ng (BDORT units) or higher. But in black hairs, Integrin \(\alpha_5 \beta_1 \) and Oncogene C-fos Ab2 were less than 1 yg (=10\(^{-24}\) g) (BDORT units). Also, when there is a malignancy, Asbestos is always increased to 0.15 mg (BDORT units) or higher [49, 90-92]. Also for malignancy, our study indicated that Thromboxane B\(_2\), which always increases in the presence of circulatory disturbance, and Placental Growth Factor are markedly increased, while DHEA is markedly reduced below 5 ng (BDORT units).

For the diagnosis of heart disease, since the left ventricular representation area occupies the largest space in the eyebrow near the bridge of the nose, white hairs at the left ventricular representation area of the eyebrow, particularly white hairs of long length, are very convenient to evaluate present and past cardiovascular problems. When the BDORT grading is (-6) or a higher negative value, one can suspect of potentially serious heart conditions. The measurement of Cardiac Troponin I, Thromboxane B\(_2\), Placental Growth Factor (PLGF), and BNP, provide diagnostic information when they are increased significantly. The author found that Thromboxane B\(_2\) and PLGF can provide the largest increase for the early detection of myocardial disease, although both of them are not specific to the heart, while Cardiac Troponin I is more specific for myocardial damages.

One optimal dose of DHEA can often increase the abnormally reduced normal cell telomere in the presence of malignancy or other serious medical conditions to over 500 ng and a maximum of 525 ng (BDORT units). But if DHEA is taken at its commonly-used dosage, in which usually 25 mg is taken daily, the patient may feel significant improvement for most medical problems for 1 or 2 days, then the effects of the toxic dose will appear. But according to the author’s previous studies, the optimal dose for the average adult can vary from anywhere between 6 mg and 12.5 mg for the majority of adults. Therefore, 25 mg is already an overdose. The effect of one optimal dose lasts anywhere from a few months to one year, provided that no
inhibiting factors are introduced. Some inhibiting factors are exposure of the body to very low temperature for more than a few hours, taking large amounts of non-steroidal anti-inflammatory drugs, taking many of the anti-hypertensive drugs using thiazide compounds, and taking some of the cholesterol-lowering drugs. But unfortunately an overdose of DHEA is given daily without the knowledge that one optimal dose’s effect can last for a considerable period of time. In this study, the effect of DHEA on the white hair on the left eyebrow indicated that one long white hair representing the left ventricle at the left eyebrow changed from white to black. There was, however, another white hair on the right eyebrow representing the left ventricle which was not influenced much by intake of DHEA; Cardiac Troponin I remained at the relatively high value of 7 ng (BDORT units) for most of the entire length of this hair. Similarly, the author noticed that some white hairs on the head became black, but other white hairs were not influenced. Therefore, it will be interesting to find out what is the cause of such a difference.

Usually, for mapping of the outline of an internal organ using the BDORT electromagnetic field resonance phenomenon between 2 identical tissues (namely between the microscope slide of specific tissue and the corresponding tissue inside of the human body), when the amounts of DHEA and telomere are normal in the surrounding tissue, as well as for the major part of the organ being imaged, often the mapped outline of the internal organ is close to the actual size of the organ. But when these parameters are much lower than normal, very often the mapped outline of the internal organ appears much smaller, but the shape of the mapped outline of the organ is found to be proportional to the actual organ. We do not know the mechanism of this phenomenon, but it is worth investigating in future studies.

On the author’s ECG, it was found that every part of the ECG’s recording of the P-wave, QRS-wave ST segment, and the T-wave correspond to specific anatomical structures of the heart. And even if the electro-cardiogram is normal according to the current interpretation, the author found that on the descending part of the T wave, there is a location known as the “Vulnerable Period for Ventricular Fibrillation” [93]. This time period of the T wave represented the Purkinje fibers of the heart. Even though the electro-cardiogram was normal, and the amounts of TXB2 and Cardiac Troponin I were normal, the amount of Placental Growth Factor (PLGF) was mildly abnormal. Therefore, when the patient has some problem with the heart and the ECG does not show any abnormality, there is the possibility of examining the “Vulnerable Period for Ventricular Fibrillation” for the amount of PLGF, along with TXB2 and Cardiac Troponin I.

As an extension of the study on the eyebrow, the author also evaluated hairs on the head and found that each hair on the head represented specific internal organs and specific internal organs are represented at specific parts of the head. By examining the entire length of each hair, particularly the part of the hair where the BDORT grading is (-)6 or a greater negative value, similar abnormalities were found. This finding will be presented in a future publication.
ACKNOWLEDGEMENTS

The author wishes to acknowledge the great help received from his Japanese associates at Japan BDORT Life Science Research Institute, Kurume City, Japan: Dr. Yasuhiro Shimotsuura, M.D., F.I.C.A.E., Vice President of Japan Bi-Digital O-Ring Test Medical Society and of Japan BDORT Life Science Research Institute; Mr. Motomu Ohki, M.Sc., F.I.C.A.E. (Honorary), Researcher; Mr. Hiroshi Kawashima, licensed acupuncturist and research associate, who helped make the color chart of the organ representation map of the eyebrow; and Mr. Akihiro Suetsugu, B.S., research associate. The author also wishes to acknowledge the help received in preparation of this manuscript by part-time research assistants of the Heart Disease Research Foundation, Mr. Nazir Khan, B.A., graduate of Harvard University, and Mr. Filip Jagodzinski, M.Sc., Ph.D. candidate at University of Massachusetts Amherst.

(This research is supported by the Heart Disease Research Foundation.)

REFERENCES

5. Omura, Y. Editorial: "Non-invasive circulatory evaluation and electro-acupuncture & TES treatment of diseases difficult to treat in Western medicine: 1) abnormal brain circulation
and blood pressure: Cephalic Hypertension or Cephalic Hypotension Syndromes and their related conditions—headache, insomnia, blindness due to macular degeneration & retinitis pigmentosa, and some psychiatric problems; 2) severe lower extremity circulatory disturbances, with intractable pain, intermittent claudication, ulceration and/or severe diabetic neuropathy. Acupuncture & Electro-Therapeutics Research, The International Journal., Vol. 8: pp. 177-255, 1983.

16. Omura, Y. "Microbial or viral infection at cardiovascular representation area of medulla oblongata as some of the possible causes of hypertension or hypotension." Program & Abstracts of 1st International Symposium on the Bi-Digital O-Ring Test organized by the Japan Bi-Digital O-Ring Test Assoc. and held at Waseda University, International Conference Center, Tokyo, Japan, pp. 36-37, May 7-9, 1993.

18. Omura, Y. "Environmental electro-magnetic fields as a potential contributing factor in various medical problems and the unique characteristic of electro-magnetic field-induced pathology in humans." Program & Abstracts of 1st International Symposium on the Bi-Digital O-Ring Test organized by the Japan Bi-Digital O-Ring Test Assoc. and held at Waseda University, International Conference Center, Tokyo, Japan, pp. 55-58, May 7-9, 1993.

19. Omura, Y. "Electro-magnetic field in the home environment (color TV, computer monitor, microwave oven, cellular phone, etc.) as potential contributing factors for the induction of Oncogen C-fos Ab1, Oncogen C-fos Ab2, Integrin a5b1 and development of cancer, as well as effects of microwave on amino acid composition of food and living human brain." Program & Abstracts of 1st International Symposium on the Bi-Digital O-Ring Test organized by the Japan Bi-Digital O-Ring Test Assoc. and held at Waseda University, International Conference Center, Tokyo, Japan, pp. 58-60, May 7-9, 1993.

20. Omura, Y. "Simple non-invasive early detection and localization of specific cancer tissues of internal organs and differentiation of cancer tissue from surrounding areas infected by cancer related viruses, as well as evaluation of their micro-circulatory condition & drug uptake using Bi-Digital O-Ring Test." Program & Abstracts of 1st International Symposium on the Bi-Digital O-Ring Test organized by the Japan Bi-Digital O-Ring Test Assoc. and held at Waseda University, International Conference Center, Tokyo, Japan, pp. 63-64, May 7-9, 1993.
21. Omura, Y. "Effect of electrical stimulation, Qi Gong or 60 Hz electrical field on acetylcholine & circulation of exposed parts of the body, as well as on insomnia & short term memory, and evaluation & treatment of alzheimer's disease by the use of the Bi-Digital O-Ring Test." Program & Abstracts of 1st International Symposium on the Bi-Digital O-Ring Test organized by the Japan Bi-Digital O-Ring Test Assoc. and held at Waseda University, International Conference Center, Tokyo, Japan, pp. 66-67, May 7-9, 1993.

43. Omura, Y., Shimotsuura, Y., Ooki, M., Noguchi, T. "Estimation of the Amount of Telomere Molecules in Different Human Age Groups and the Telomere Increasing Effect of

50. Omura, Y. “The role of asbestos in the genesis of intractable diseases, including: Cancer, Mesothelioma, Alzheimer’s Disease, Autism, Cardiovascular Disease, Pain, Cataract, and Morgellon’s Disease and how to remove asbestos safe and affectively.” Held at the Institute for Higher Education in Tokyo, Japan. Proceedings of 8th Annual Japan Immunological Disease Therapy Research Association, Annual Scientific Meeting, pp 9-12, April 22, 2007

90. Omura, Y. “Asbestos as a Possible Major Cause of Malignant Lung Tumors (Including Small Cell Carcinoma, Adenocarcinoma, & Mesothelioma), Brain Tumors (i.e. Astrocytoma & Glioblastoma Multiforme), Many Other Malignant Tumors, Intractable Pain Including Fibromyalgia, & Some Cardiovascular Pathology: Safe & Effective Methods of Reducing Asbestos From Normal & Pathological Areas.” Acupuncture and Electro-Therapeutics Research, The International Journal. Vol. 31(1/2), pp 61-126, 2006

91. Omura, Y. “Toxic Components of Smoke & Dust from the Burning Destruction of the World Trade Center, and Inhalation of Asbestos from Buildings and Drinking of Asbestos Contaminated Water Often Contributes to Chronic Intractable Medical Problems, Including

