Pain, neurogenic inflammation and symmetry in medical practice

N Shenker, R Haigh, E Roberts, P Mapp, N Harris and D Blake

Royal National Hospital for Rheumatic Diseases, Bath and University of Bath, UK

Symmetry is a cardinal feature of certain painful and inflammatory diseases, including rheumatoid arthritis and psoriasis. This symmetry does not occur by chance, but it is as yet unexplained. It has been hypothesized by this group and others that mechanisms of neurogenic inflammation could explain both this symmetrical distribution and the chronicity of these diseases. A recent review has demonstrated contralateral responses in the nervous system to unilateral neurological insults. These responses were topographically precise and stimulus specific in nature. This article details similar responses that have been observed to inflammatory stimuli in animal models. The role of pro-inflammatory neuropeptides, such as substance P, in these pathways is discussed. The hypothesis could be tested in both animals and humans.

Introduction

A symmetrical pattern of involvement in some diseases, such as rheumatoid arthritis, is clinically so important that it is a feature of their diagnostic criteria.1 Is this a statistical aberration secondary to the large number of joints involved, or are there underlying mechanisms to explain the symmetry? Insight comes from another inflammatory condition, psoriasis. Skin psoriasis and some of the arthritides associated with it affect the topographically precise contralateral side much more frequently than a mathematical model would predict if there was a random pattern of disease distribution.2,3 There are many other painful and inflammatory conditions that exhibit symmetry.

Complex regional pain syndrome (CRPS) has also been described as symmetrical in a substantial number of patients. Documented bilateral presenting symptoms have been noted to occur in about 5% of patients with CRPS.4 However, detailed investigations, such as with technetium pertechnetate bone scanning, demonstrate that asymmetrical involvement may occur more commonly than clinical symptoms suggest.5

Osteoarthritis is a painful condition in which biomechanical factors are undoubtedly important. However, as in inflammatory arthritis, neurological lesions are protective against developing osteoarthritis6 and a symmetrical distribution to the joints affected by osteoarthritis is also a feature.7

Sympathetic ophthalmia is a rare bilateral granulomatous panuveitis that occurs days, months or years after a penetrating eye injury. The histopathology is characterized by diffuse choroidal thickening and lymphocytic infiltration,
interrupted at multiple sites by collections of epithelioid cells and a few multinucleated giant cells, both containing pigment. The only way to prevent sympathetic ophthalmia is enucleation of the traumatized eye, and some reports suggest that this procedure, even after development of the disease, ameliorates its course.8 There must be factors in the traumatized eye that influence the prognosis of the ‘sympathizing’ eye. These are most likely to be hidden antigens, exposed at the time of trauma to trigger an autoimmune reaction, but other hypotheses could be put forward to explain the chronic destructive lymphocytic involvement, not dissimilar in appearance to another symmetrical disease, rheumatoid arthritis.

The improvement of imaging techniques, specifically the use of magnetic resonance imaging (MRI), has yielded much more information. Minor neurological abnormalities, as detected by brain MRI scans enhanced by gadolinium diethylentriaminepentaacetic acid and diffusion studies, were seen to predate contralateral plaque development in patients with active multiple sclerosis.9 In testicular malignancy, the nonaffected testes of 21 patients were seen to have changes detected by gadolinium-enhanced MRI scans, which persisted for up to 45 months after orchidectomy.10

All of this clinical evidence suggests that symmetrical patterns are not simply the product of a disease process that affects distant areas of the body in a nonrandom manner. There is order to the distribution of disease. This order is, however, unexplained.

A hypothesis has been proposed by this group and others that the symmetry of disease is neurologically mediated by the mechanisms of neurogenic inflammation. This pathophysiology contributes to the severity and chronicity of these diseases.11,12

Experimental evidence for the symmetrical spread of pain and inflammation

The nervous system is anatomically symmetrical, both peripherally and centrally. The two sides of the spinal column have generally been thought to function independently from each other. This is clearly not true. Koltzenburg et al.13 have reviewed the literature detailing the various neuronal insults that result in contralateral identical responses.

The body has contralateral responses to neurological lesions, so does it have contralateral responses to inflammatory lesions? Numerous experimental observations in the rat hindpaw and monoarthritic lesions have provided evidence that such responses do occur (Tables 1 and 2).

These contralateral responses to ipsilateral inflammation are not artefactual. They have been described in different animal models, using different insults, and have produced a variety of responses observed in different laboratories. In some experiments, contralateral effects were documented even though they had not been postulated. For instance, some investigators used contralateral joints or hindpaws as controls and were surprised to find changes.16

A nociceptive explanation for contralateral effects

There are three possible mechanisms to explain these contralateral responses: neurological, circulatory, or a combination of both routes. There is strong evidence to implicate the nervous system and reasons to suggest that the circulatory system is unlikely to be solely responsible; but some evidence suggests that the nervous system focuses circulation-dependent inflammatory responses.

Neuropeptide-containing unmyelinated fibres are important in mediating contralateral responses. The response is abolished or attenuated if peripheral nerves are sectioned.15,28 If C fibres are targeted selectively by using capsaicin or intrathecal substance P antagonists, then the response is also abolished.15,19,34 Spinal cord compression also attenuates the contralateral response.15 It is therefore unlikely that supraspinal control is essential for contralateral responses to occur, although these pathways are likely to influence these responses.

The presence of such contralateral pathways is suggested both anatomically and electrophysiologically. Neurones, presumably nociceptive, that decussate in the spinal cord have been described in repeated histological studies.35–37 These occur
Table 1 Effect of monoarthritis on the contralateral joint

<table>
<thead>
<tr>
<th>Inflammatory insult</th>
<th>Species</th>
<th>Contralateral effect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freund’s adjuvant (0.5 ml of 1 mg/ml) in knee</td>
<td>Rat</td>
<td>Increase in SP 2–24 h</td>
<td>Bileviciute et al., 1993¹⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in CGRP at 2–24 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in NPY at 2–24 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in NK-A at 2 h and at 24 h</td>
<td></td>
</tr>
<tr>
<td>Carrageenan 2% (0.05 ml) in knee</td>
<td>Rat</td>
<td>Increase in SP at 2 h and at 24 h</td>
<td>Bileviciute et al., 1993¹⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in CGRP at 2–24 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in NPY at 2–24 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in NK-A at 24 h</td>
<td></td>
</tr>
<tr>
<td>SP (0.05 ml of 1 µM) in knee</td>
<td>Rat</td>
<td>Increase in SP 2–24 h</td>
<td>Bileviciute et al., 1993¹⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in CGRP at 6–24 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in NPY at 2–6 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No increase in NK-A</td>
<td></td>
</tr>
<tr>
<td>Human recombinant IL-1 (0.05 ml of 1 mg/ml) in knee</td>
<td>Rat</td>
<td>Increase in SP at 2 h</td>
<td>Bileviciute et al., 1993¹⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in CGRP at 2–24 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in NPY at 2–24 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in NK-A at 2–6 h</td>
<td></td>
</tr>
<tr>
<td>CFA (1 µg)</td>
<td>Rat</td>
<td>Decrease in anabolism of cartilage</td>
<td>Decaris et al., 1999¹⁵</td>
</tr>
<tr>
<td>SP in knee (0.2, 1, 2, 10, 20 µg in 50 µl saline)</td>
<td>Rat</td>
<td>Decrease in anabolism of cartilage</td>
<td>Decaris et al., 1999¹⁵</td>
</tr>
<tr>
<td>Retrovirus encoding IL-4 in ankle</td>
<td>Rat with AIA</td>
<td>Increase in IL-4 in the absence of transgene</td>
<td>Boyle et al., 1999¹⁶</td>
</tr>
<tr>
<td>AIA in knee (500 µl of mBSA in rats immunized with 1 ml CFA 2 mg Mycobacterium tuberculosis)</td>
<td>Rat</td>
<td>Histopathological and biochemical evidence of joint destruction</td>
<td>Meyer et al., 2000¹⁷</td>
</tr>
<tr>
<td>m-BSA in CFA and Bordetella pertussis in knee</td>
<td>Rat</td>
<td>Increased proteoglycan loss</td>
<td>Segond von Banchet et al., 2000¹⁸</td>
</tr>
<tr>
<td>100 µl of 1% latex spheres (11.9 µm diameter) in knee</td>
<td>Rat</td>
<td>Bradykinin-induced plasma extravasation enhanced Macrophage infiltration</td>
<td>Kidd et al., 1995¹⁹</td>
</tr>
<tr>
<td>CFA (0.2 ml) in knee</td>
<td>Rat</td>
<td>Reduces phenylephrine (α1-adrenoceptor agonist) vasoconstrictor response up to 21 days</td>
<td>Badavi et al., 2000²⁰</td>
</tr>
<tr>
<td>50 µg mBSA in knee of sensitized rats</td>
<td>Rat</td>
<td>Histological evidence of cartilage damage and pannus formation at 14–20 days</td>
<td>Andersson et al., 1998²¹</td>
</tr>
</tbody>
</table>

SP, substance P; CGRP, calcitonin gene-related peptide; NPY neuropeptide A; NK-A neurokinin A; IL, interleukin; CFA, complete Freund’s adjuvant; AIA, adjuvant-induced arthritis; m-BSA, methylated bovine-specific antigen
at all spinal levels across all species examined, including primates.\(^37\) Electrophysiological studies show sensory neurones with contralateral receptive fields.\(^38-40\) Receptive fields from some nociceptive fibres are seen to expand in the presence of inflammation from unilateral to bilateral in a topographically precise fashion.\(^38,39\)

A circulatory explanation for contralateral effects

An alternative hypothesis is that the contralateral effect is mediated via the circulation as part of a systemic response. It is difficult however to envisage how a circulatory factor could be so topographically specific as to trigger a response in the contralateral knee, but not the hip or the ankle.\(^17,19\) Equally persuasive against a circulatory basis for these responses are experiments in

<table>
<thead>
<tr>
<th>Inducing agent</th>
<th>Contralateral effect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1beta (10 ng)</td>
<td>Bradykinin 1 receptor-mediated mechanical hyperalgesia elicited</td>
<td>Ganju et al., 2001(^22)</td>
</tr>
<tr>
<td>CFA (100 µl)</td>
<td>TNF-alpha levels elevated</td>
<td>Woolf et al., 1997(^23)</td>
</tr>
<tr>
<td>Carrageenan (0.1 ml of 2%)</td>
<td>CGRP levels increase in perfusate</td>
<td>Yu et al., 1996(^24)</td>
</tr>
<tr>
<td>CGRP 100 µl (300 pmol)</td>
<td>Oedema induced at 5–24 h</td>
<td>Bileviciute et al., 1998(^25)</td>
</tr>
<tr>
<td>Crystal-induced</td>
<td>Swelling observed</td>
<td>Denko and Petricevic, 1978(^26)</td>
</tr>
<tr>
<td>Mycobacterium butyricum 100 µl of 6 mg/ml in CFA</td>
<td>Hindpaw oedema in polyarthritic rats</td>
<td>Ianaro et al., 2000(^27)</td>
</tr>
<tr>
<td>Repeated saline injection</td>
<td>Oedema and hyperalgesia</td>
<td>Levine et al., 1985(^28)</td>
</tr>
<tr>
<td>Carrageenan 100 µl of 2%</td>
<td>Thermal and mechanical withdrawal latencies reduced</td>
<td>Yu et al., 1996(^24)</td>
</tr>
<tr>
<td>Carrageenan 100 µl of 2%</td>
<td>Hyperalgesia induced</td>
<td>Kissin et al., 1998(^29)</td>
</tr>
<tr>
<td>Bee venom 100 µl (0.2 mg)</td>
<td>Reduction in heat withdrawal latency</td>
<td>Chen et al., 1999(^30)</td>
</tr>
<tr>
<td>Thermal</td>
<td>Heat hyperalgesia</td>
<td>Coderre and Melzack, 1985,(^31) 1987(^32)</td>
</tr>
<tr>
<td>Formaldehyde 50 µl (0.1%, 5% and 10% solution)</td>
<td>Licking responses occur at 25–45 min</td>
<td>Aloisi et al., 1993(^33)</td>
</tr>
</tbody>
</table>

IL, interleukin; CFA, complete Freund’s adjuvant; TNF, tumour necrosis factor; CGRP, calcitonin gene-related peptide
which the draining veins of an inflamed limb are ligated and the contralateral response is unaffected.

There are however studies that demonstrate leucocytes unexpectedly trafficking to the contralateral joint after induction of a monoarthritis. Methotrexate appears in the contralateral knee within one hour after it is injected intraarticularly. It is unknown whether this is an anatomically specific or a more generalized synovial response. Further evidence supporting the role of the nervous system in directing inflammatory responses comes from studies demonstrating the lateralization of T-cell responses in patients who have suffered a stroke. It is therefore possible that a systemic inflammatory response could be targeted focally by a nervous system that upregulates local inflammatory responses.

Neuropeptides and inflammation: neurogenic inflammation

The role of neuropeptides in chronic disease has long been hypothesized. The role of neurogenic inflammation in psoriasis has been clearly shown in a photograph demonstrating resolution of part of a plaque after surgical severance of intercostal nerves. Clinically, paralysed joints caused either by stroke or poliomyelitis, are spared in patients with rheumatoid arthritis and neurological compromise. Experimentally, by selectively lesioning C fibres with capsaicin, inflammation in animal models of arthritis is attenuated. Neuropeptides, such as substance P and calcitonin gene-related peptide (CGRP) have pro-inflammatory effects. They influence vasodilation, extravasation, leucocyte mobilization and leucocyte-driven microbial destruction systems. The net effect of these properties is to ‘upregulate’ the inflammatory response and they are the peptides that cause the skin flare wheal in axon reflexes. It has been demonstrated that nerve fibres (C and A delta fibres) containing these neuropeptides are found in synovial joints and in an especially high concentration perivascularly. Some fibres also extend deeper into joint synovium. The dense innervation of joints with these fibres provides anatomical evidence that neuropeptides are well positioned to influence inflammatory responses there and could explain the presence of the histological findings in patients with CRPS.

Systemic levels of CGRP are increased in patients with CRPS, in whom the level of substance P in cerebrospinal fluid has been shown to be about three times that of a matched control population. Neuropeptide levels are increased in synovial fluid taken from patients with rheumatic diseases. Neuropeptides have also been shown to recruit leucocytes into the synovium. Joints primed with neuropeptides mount larger inflammatory responses to pro-inflammatory substances such as histamine or bradykinin. In animal models, joints injected with neuropeptides develop more severe experimental arthritis.

Patients with chronic pain syndromes or rheumatoid arthritis show differences in nociceptive pathways when compared with normal control patients. The area of secondary hyperalgesia (defined as increased pain that is distant from tissue injury) after topical capsaicin is larger in patients with rheumatoid arthritis than in normal controls. Broadly speaking, this could be interpreted as an upregulation of inflammatory responses. At a higher level, cortical and subcortical changes have been observed in patients with chronic pain, which are different to those in people with rheumatoid arthritis and normal controls.

Testing the hypothesis

Anatomical and electrophysiological studies could be used further to elucidate transmedian pathways in spinal segments in both animals and humans. Animal models could also be developed further to understand the influence of neurogenic inflammation on the symmetry of arthritis. These could include rats treated with capsaicin neonatally to reduce significantly the number of neuropeptide-containing C fibres.

In humans, hyperalgesia and early inflammation can be safely and reliably induced by using capsaicin, histamine, or thermal burns, and can be measured by standard psychophysical
techniques. Skin blood flow, a marker of inflammatory response, can be assessed by thermographic and laser Doppler imaging. Cellular inflammatory response can be assessed histologically and by using immunocytochemical methods. Stable and reliable models of contralateral responses need to be developed. Candidate models include contralateral vasodilatation in response to topical or intradermal capsaicin. Contralateral responses to inflammatory stimuli could therefore be assessed in patients with inflammatory diseases and in normal controls. Physiological studies could then be performed further to understand the mechanisms of contralateral responses, and pharmacological compounds aimed at blocking them could be tested. Once perfected, these techniques could become a novel therapeutic strategy for use in inflammatory conditions.

Conclusion

Symmetry occurs frequently in medical practice. A nociceptive pathway has been proposed to explain this. Patients with chronic painful or inflammatory conditions demonstrate different peripheral neurological responses compared with normal controls. Neurogenic inflammation may therefore explain the symmetry seen in these conditions. Compounds that stabilize these nociceptive pathways to prevent neurogenic inflammation could alter significantly the prognosis of these diseases and thereby offer new therapies.

Acknowledgements

Professor DR Blake is supported by an Integrated Clinical Arthritis Centres project grant from the Arthritis Research Council and a Programme Grant from the ARC. Dr R Haigh is in receipt of an award from the Nuffield Foundation, the Oliver Bird Trust. The group receives support from Smith Kline Glaxo Wellcome.

References

26 Denko CW, Petricevic M. Sympathetic or reflex footpad swelling due to crystal induced inflammation in the opposite foot. *Inflammation* 1978; 3: 81–86.

30 Chen J, Luo C, Li H, Chen H. Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. *Pain* 1999; 83: 67–76.

36 Light AR, Perl ER. Reexamination of the dorsal root projection to the spinal dorsal horn, including observation of the differential termination of coarse and the fine fibres. *J Comp Neurol* 1979; 186: 117–32.

Copyright of Pain Reviews is the property of Arnold Publishers and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.