Salvia Fruticosa, Salvia Officinalis, and Rosmarinic Acid Induce Apoptosis and Inhibit Proliferation of Human Colorectal Cell Lines: The Role in MAPK/ERK Pathway

Cristina P. R. Xavier
CBMA–Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal

Cristovao F. Lima and Manuel Fernandes-Ferreira
CITAB–Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Minho, Braga, Portugal

Cristina Pereira-Wilson
CBMA–Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal

INTRODUCTION

Cancer is an important health problem and one of the most common forms is colorectal carcinoma (CRC). Phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signalling pathways play critical roles in cell proliferation and survival and are frequently activated in CRC (1–3). Deregulation of these pathways is also thought to determine response to treatment (4). Mutations of KRAS and BRAF in sporadic CRC (70–80% of total cases) (5) are alternative in which the former constitutively activates both MAPK/ERK and PI3K/Akt pathways, and the latter activates the MAPK/ERK pathway (3,4,6–8). As presented by Schubbert et al. (9), mutations in CRC of either KRAS or BRAF genes occur in 32% and 14% of cases, respectively. Studies have also shown that CRC is frequently associated with mutations in genes that encode for PI3K, p110 catalytic subunit PI3KCA, and PTEN (an endogenous inhibitor of PI3K activity), resulting in an overexpression of Akt (10–13). Considering the high incidence of CRC, inhibitors of these pathways are actively being searched for use in the control of cancer progression (14–16).

Epidemiologic studies have shown that Western type diets, poor in vegetables and fruits, are risk factors known to be associated with CRC, suggesting that nutritional factors may also be preventive and also helpful in the control of cancer (17–19). In fact green and black tea consumption has been shown to be effective in the initiation, promotion, and progression stages of carcinogenesis, although effects on colon cancer are inconclusive (20). Plants of the genus Salvia (sage) such as Salvia miltiorrhiza and Salvia menthaefolia have also been suggested to have anticancer properties based on antiproliferative activity on tumor cells (21,22). In addition, reactive oxygen species (ROS) have been reported to play a role in signalling transduction enhancing proliferation and survival of cancer cells. Antioxidant phytochemicals, through their ROS scavenging activity, may suppress altered redox-sensitive signalling events in cancer (23,24).

Salvia fruticosa (SF) and Salvia officinalis (SO), poorly studied with regard to their anticancer activity, are Mediterranean medicinal and aromatic plants that contain rosmarinic acid (RA; Fig. 1) as major phenolic compound in their water extracts. RA constitutes about 58% of all phenolic compounds present in SF water extract and 70% in SO water extract (25,26). This phenolic...
compound has high antioxidant and anti-inflammatory activities (22,27), but little is known about its effects on cancer cells and especially on CRC.

In the present article, we report on the antiproliferative and proapoptotic effects of 2 Salvia water extracts, SF and SO, and their major phenolic compound, RA, in 2 human colon cancer-derived cell lines, HCT15 and CO115, through effects on the MAPK/ERK and PI3K/Akt pathways and caspase-mediated apoptosis. These 2 cell lines possess different activating mutations in these 2 pathways: HCT15 has a KRAS (G13D) mutation (28), whereas CO115 has a BRAF (V599E) mutation (29).

In view of these genetic differences, we further speculate on the mechanisms behind the antiproliferative and proapoptotic effects of sage extracts and RA and the involvement of PI3K/Akt and MAPK/ERK signalling pathways in these effects.

MATERIAL AND METHODS

Reagents and Plant Extracts

All reagents and chemicals used were of analytical grade. Wortmannin (W), RA, and staurosporine were purchased from Sigma-Aldrich (St. Louis, MO) and PD-98059 (PD) was from Calbiochem (San Diego, CA). The primary antibodies anti-phospho-Akt (Ser473), anti-Akt total, anti-phospho-PTEN (Ser380/Thr382/383), anti-PTEN total, anti-p44/42 MAPK total, and anti-cleaved caspase-9 (Asp315) were prepared as previously described by Lima et al. (30) by Sigma-Aldrich. The secondary antibodies HRP donkey antirabbit and sheep antirabbit were from GE Healthcare (Bucks, United Kingdom).

The water extracts of Salvia fruticosa and Salvia officinalis were prepared as previously described by Lima et al. (30) by pouring boiling water onto the dried plant material (at a ratio of 150 ml of water to each 2 g of plant) and allowing it to steep for 5 min. After filtering, the water extract was lyophilized to dryness. The extracts of both sages were made using batches of the plants whose composition, in terms of phenolics compounds, have already been published (25,26). In brief, SF water extract contains as major phenolic compound RA (71.5 µg/ml), 6-hydroxyluteolin-7-glucoside (22.7 µg/ml), a not identified flavone heteroside (28.6 µg/ml), and the remaining phenolic compounds represent 0.8 µg/ml. SO water extract contain as major phenolic compounds RA (52.0 µg/ml), luteolin-7-glucoside (19.7 µg/ml) and the remaining phenolic compounds represent 2.7 µg/ml.

Stocks solutions of PD and W were made in dimethyl sulfoxide (DMSO), and aliquots were kept at -20°C. Therefore, DMSO (0.5%) was included in cell culture for the other conditions (controls and extracts/RA) to exclude any possible DMSO effect.

Cell Culture

HCT15 and CO115 human CRC-derived cell lines were a gift from Dr. Raquel Seruca (IPATIMUP, University of Porto, Portugal) and were maintained in culture at 37°C in a humidified 5% CO2 atmosphere in RPMI-1640 medium (Sigma-Aldrich) supplemented with 10 mM HEPES, 0.1 mM pyruvate, 1% antibiotic-antimycotic solution (Sigma-Aldrich), and 10% fetal bovine serum (FBS; EU standard; Cambrex, Verviers, Belgium).

Cells were seeded onto 6-well plates at a density of 0.75 × 10^5 (HCT15) and 1.0 × 10^5 (CO115) cells/well. Incubations with different concentrations of sage extracts and RA were performed in serum free medium for 48 h to quantify BrdU incorporation and TUNEL positive cells and for 24 h for Western blot analysis.

Assessment of Proliferation by BrdU Incorporation

Preliminary experiments using the MTT assay were performed in order to choose concentrations of SF and SO extracts that inhibited around 50% cell proliferation without cytotoxic effects. RA was tested in similar concentrations to the ones found in the extracts at the concentrations used and also did not induce cytotoxic effect. After 45 h of treatment with sage extracts or RA at different concentrations, bromodeoxyuridine (BrdU; Sigma-Aldrich) was added to the culture medium to give a final concentration of 10 µM and then incubated for another 3 h. Both adherent and nonadherent cells were collected from each sample, fixed with 4% paraformaldehyde for 15 min at room temperature, and then attached into a polylysine-treated slide using a Shandon Cytospin (Thermo Fisher Scientific Inc, Waltham, MA). Cells were incubated with HCl 2 M for 20 min, washed in PBS containing 0.5% Tween-20 and 0.05% BSA (TPBS-B) and then incubated with monoclonal mouse anti-BrdU antibody (DakoCytomation, Glostrup, Denmark) for 1 h at room temperature. After washing in TPBS-B, cells were incubated with antimouse IgG FITC-conjugated secondary antibody (Sigma-Aldrich) for 1 h at room temperature, washed again, and then incubated with Hoechst for nuclei staining. The percentage of proliferating cells was calculated as the ratio between BrdU positive cells and total number of cells (nuclei staining with Hoechst), from a count higher than 500 cells per slide under a fluorescent microscope. Results are presented as mean ± SEM of at least 3 independent experiments.

Assessment of Apoptosis by TUNEL Assay

Cells treated as above for 48 h were collected (both floating and attached cells) and fixed with 4% paraformaldehyde for
15 min at room temperature and then attached into a polylysine-treated slide using a Shandon Cytospin. Cells were washed in PBS and permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate for 2 min on ice. TUNEL assay was performed using a kit from Roche (Mannheim, Germany) following the manufacturer’s instructions. Cells were incubated with Hoechst for nuclei staining. The percentage of apoptotic cells was calculated from the ratio between TUNEL positive cells and total number of cells (nuclei staining with Hoechst) from a count higher than 500 cells per slide under a fluorescent microscope. Results are presented as mean ± SEM of at least 3 independent experiments.

Protein Extraction and Western Blotting

After 24 h of treatment with sage extracts or RA at the highest concentration used in the BrdU and TUNEL assay, cells were washed with PBS and lysed for 15 min at 4° C with ice cold RIPA buffer (1% NP-40 in 150 mM NaCl, 50 mM Tris (pH 7.5), 2 mM EDTA), supplemented with 20 mM NaF, 1 mM phenylmethylsulfonyl fluoride (PMSF), 20 mM Na2V3O4 and protease inhibitor cocktail (Roche). Protein concentration was quantified using a Bio-Rad DC protein assay (Bio-Rad Laboratories, Inc., Hercules, CA) with BSA as a protein standard. Twenty micrograms of protein for each sample were separated by SDS gel electrophoresis and then electroblotted to a Hybond-P polyvinylidene difluoride membrane (GE Healthcare). Membranes were blocked in TPBS (PBS with 0.05% Tween-20) containing 5% (wt/vol) non-fat dry milk or BSA, incubated with the primary antibody, and followed by the secondary antibody conjugated with IgG horseradish peroxidase. Membranes were washed 3 times with TPBS between the different incubations. Immunoreactive bands were detected using the Immobilon solutions (Millipore, Billerica, MA) under a chemiluminescence detection system, the Chemi Doc XRS (Bio-Rad Laboratories, Inc.). Band area intensity was quantified using the Quantity One software from Bio-Rad. β-actin was used as a loading control. Results are presented as mean ± SEM of at least 3 independent experiments.

Statistical Analysis

One-way ANOVA followed by the Student–Newman–Keuls test was used to perform statistical analysis for BrdU, TUNEL, and Western blot data. GraphPad Prism 4.0 software (San Diego, CA) was used, and P values ≤ 0.05 were considered statistically significant.

RESULTS

Effects on Cell Proliferation

To test the effects of SF, SO, and RA on cell proliferation of human colon cancer cells, 2 different colon carcinoma-derived cell lines, HCT15 and CO115, were used.

Based on preliminary experiments using the MTT assay (data not shown) in which cells were incubated with several concentrations of sage extracts for 48 h, concentrations of each extract that were not cytotoxic and inhibited cell proliferation around 50% were chosen for the subsequent studies. Since RA is the main phenolic compound of these extracts, we also tested RA in similar concentrations to the ones found in the extracts under our experimental conditions.

The effects of sage extracts and RA on cell proliferation of both cell lines were tested using the BrdU incorporation assay. As shown in Fig. 2A, a significant inhibition of HCT15 cell proliferation by both SF and SO was observed at all concentrations tested. Levels of BrdU incorporation significantly decreased from 26.2% in the control to 4.7% in HCT15 cells treated with 50 µg/ml of SF and SO extracts. In CO115 cells, SF and SO did not significantly inhibit cell proliferation (Fig. 2B). No significant inhibition of cell proliferation was observed in neither of the cell lines when treated with RA (Fig. 2). Comparing the effects of sage extracts in the 2 cell lines, we observed that SF extract was somewhat more active than SO, and HCT15 cells were more sensitive to the sage extracts.

FIG. 2. Effect of different concentrations of Salvia fruticosa (SF), Salvia officinalis (SO), and rosmarinic acid (RA) for 48 h on bromodeoxyuridine (BrdU) incorporation in A: HCT15 and B: CO115 cells. Values are mean ± standard error of the mean of at least 3 independent experiments. * P ≤ 0.05 and ** P ≤ 0.001 when compared to control. DMSO, dimethyl sulfoxide.
PHENOLIC COMPOUNDS AND HUMAN COLORECTAL CELL LINES

Effects on Apoptosis

The ability of SF, SO, and RA to induce apoptosis in human CRC-derived cells were studied using the TUNEL assay. As shown in Fig. 3, both *Salvia* extracts and RA significantly induced apoptosis in a concentration-dependent manner in both HCT15 and CO115 cells. Apoptotic cells in HCT15 increased from 0.4% in the control to 6.6%, 5.8%, and 2.5% in SF, SO, and RA treatments, respectively, at the higher concentrations tested (Fig. 3A). In CO115 cells, apoptotic cells increased from 1.8% in the control to 6.8%, 3.8%, and 3.6% in the conditions treated with the higher concentrations tested of SF, SO, and RA, respectively (Fig. 3B). Since the basal levels of apoptosis were higher in the CO115 cell line, overall it seems that the HCT15 cells were more sensitive to the extracts and RA. Again, SF extract showed to be more active than SO extract and RA alone. The involvement of caspases 3 and 9 in the apoptosis induction by sage extracts and RA was also studied by Western blot. After 24 h of treatment with the highest concentrations used of SF, SO, and RA, we did not observe cleaved caspase-3 in either cell line in contrast with the reference compound, staurosporine (data not shown).

Effects on MAPK/ERK Pathway

The effects of sage extracts and RA for 24 h were studied on the MAPK/ERK pathway by Western blot. *Salvia* extracts and RA significantly decreased phospho-ERK protein levels in HCT15 cells (Fig. 4A), whereas no effects were observed in CO115 cells (Fig. 4B). The reference inhibitor of phospho-ERK, PD-98059 (PD), was effective in both cell lines (Fig. 4) in a similar way to SF, SO, and RA in HCT15 cells.

Effects on PI3K/Akt Pathway

The effects of sage extracts and RA on the expression of phospho-Akt and phospho-PTEN (a negative regulator of PI3K/Akt pathway) were also tested. Phospho-Akt was observed in CO115; however, it was not detected in HCT15 in medium with and without serum (data not shown). Neither of the *Salvia* extracts nor RA inhibited significantly the expression of phospho-Akt in CO115 cells (Fig. 5A). A significant inhibition of Akt phosphorylation was observed for the reference PI3K inhibitor, wortmannin (W). HCT15 cells expressed phospho-PTEN, and this expression was not significantly changed by *Salvia* extracts, RA or W (Fig. 5B). CO115 cells did not express phospho-PTEN or total PTEN in medium with and without serum (data not shown).

DISCUSSION

To assess the potential of sage in the control of CRC progression, the antiproliferative and proapoptotic effects of *Salvia fruticosa* (SF) and *Salvia officinalis* (SO) water extracts and their main phenolic compound, rosmarinic acid (RA), were studied in two human CRC-derived cell lines, HCT15 and CO115. Both sage water extracts (SF and SO) were effective in inhibiting proliferation in a concentration-dependent manner in HCT15 but not in CO115 cells. SF, SO, and RA induced apoptosis. SF was more effective than SO with regard to both antiproliferative and proapoptotic effects. To identify the bioactive compound behind these effects, sage’s major phenolic compound (RA) was tested individually at concentrations similar to those present in the extracts. However, RA was found not to have antiproliferative activity but to be proapoptotic in both cell lines, although to less extent than sage extracts. In view of these results, it seems that other active compounds present in the extracts may be responsible for the antiproliferative and proapoptotic effects of SF and SO.

The 2 cell lines used harbor different activating mutations: HCT15 has a KRAS (G13D) activating mutation (28) with potential to constitutively activate both PI3K/Akt and MAPK/ERK pathways, whereas CO115 harbors a BRAF (V599E) mutation (29) that affects the MAPK/ERK pathway. The highest sensitivity of HCT15 could be a result of these genetic differences. HCT15 cells, even though presenting an activating mutation of...
FIG. 4. Effects of *Salvia fruticosa* 50 µg/ml (SF50), *Salvia officinalis* 50 µg/ml (SO50), and rosmarinic acid 100 µM (RA100) for 24 h on the expression of phospho-extracellular-regulated kinase (p-ERK) in A: HCT15 cells and B: CO115 cells. PD-98059 50 µM (PD50) was used as a reference inhibitor of p-ERK. Values are mean ± standard error of the mean of at least 3 independent experiments. *P ≤ 0.05 and ***P ≤ 0.001 when compared to control. DMSO, dimethyl sulfoxide; W, wortmannin.

FIG. 5. Effects of *Salvia fruticosa* 50 µg/ml (SF50), *Salvia officinalis* 50 µg/ml (SO50), and rosmarinic acid 100 µM (RA100) for 24 h on the expression of phospho-v-akt murine thymoma viral oncogene homolog (p-Akt) in A: CO115 cells and phosphatidylinositol 3 kinase. No p-Akt expression was observed in HCT15 cells, and no PTEN expression was observed in CO115 cells. Values are mean ± standard error of the mean of at least 3 independent experiments. **P ≤ 0.01 when compared to control. DMSO, dimethyl sulfoxide; W, wortmannin.
the RAS oncogene, did not express phospho-Akt possibly as a consequence of the high levels of the strong negative regulator of this pathway, phospho-PTEN, found in this cell line. In these cells, the antiproliferative effects of SF and SO correlate with an inhibition of phospho-ERK. However, RA showed a significant inhibition of phospho-ERK without inhibiting HCT15 cell proliferation. Inhibition of phospho-ERK seems, therefore, not to be the only factor involved in inhibition of cell proliferation in this cell line. Our findings are in agreement with previous studies (6,31), which have shown that an inhibition of MAPK/ERK pathway in KRAS mutated cell lines is not sufficient to inhibit cell proliferation. Therefore, the KRAS mutated HCT15 cells do not depend exclusively on MAPK/ERK pathway to proliferate, and as a result, SF and SO seem also to be inhibiting other proliferation pathways, which in these cells do not include Akt phosphorylation (Fig. 6).

In CO115 cells, where SF and SO did not have antiproliferative effect, there was no inhibition of phospho-ERK or phospho-Akt. RA also did not inhibit proliferation of CO115 cells. However, in contrast to the effects on the other cell line, RA was without effect on phospho-ERK. Inhibition of MAPK/ERK pathway by sage extracts and RA in HCT15 and not CO115 indicates that the effect may be upstream of BRAF and could be on KRAS (Fig. 6). In CO115 cells, a potential inhibition of RAS by sage extracts would not result in antiproliferative effects due to the downstream activating mutation of BRAF (Fig. 6). An inhibition of RAS oncogene has also been recently shown for quercetin, a common, natural-occurring, phenolic compound (32,33). It seems that the effects of RA depend on cell type and/or genetic background because others have also shown that RA decreases ERK phosphorylation in cardiac muscle cells, but it is without effect on Akt and ERK in melanoma cells (34,35).

SF, SO, and RA induced apoptosis in both cell lines. It seems, however, that under these conditions, apoptosis is not dependent on the cleavage of either caspase-9 or caspase-3 in both cell lines. Nevertheless, some authors have shown that RA promotes apoptosis in human Jurkat cells and HepG2 cells via the mitochondrial pathway and Bcl-2 suppression in which caspasess are involved (36–38). Also, the mitochondrial pathway was induced by RA in activated T cells from rheumatoid arthritis patients (39). It seems, therefore, that the induction of caspase pathways by RA is cell type specific and/or dependent on concentration and time of exposure, which may explain the discrepancy between these and our results. The inhibition of MAPK/ERK pathway may contribute, at least in part, to the effects on apoptosis in HCT15 cells.

Besides a possible interaction with KRAS, sage extracts may act as antiproliferative and proapoptotic in these cancer cell lines through their antioxidant activity. It is known that cancer cells produce increased amounts of ROS, in particular hydrogen peroxide, which could inhibit protein fosfatases and also be associated with signalling events in MAPK pathways that lead to activation of redox-sensitive transcription factors, mediating cancer cell proliferation and survival (23,24). Therefore, the radical scavenging activity of the phenolic compounds present in the sage extracts may be reducing the ROS levels in these cancer cells contributing also to a decreased activity of redox-sensitive proliferative pathways through RAS signalling. Based on RA results, the effects described in this study seem, however, not to be totally explained by the antioxidant properties of the sage extracts.

In conclusion, our results show that SF and SO water extracts inhibit proliferation and induce apoptosis in CRC-derived cell lines, whereas RA was only effective on the induction of

FIG. 6. Model for the inhibition of extracellular-regulated kinase (ERK) phosphorylation by *Salvia fruticosa* (SF), *Salvia officinalis* (SO), and rosmarinic acid (RA) in HCT15 but not in CO115 cells. SF, SO, and RA inhibit mutant V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) leading to a decrease on the levels of phospho-ERK in HCT15 cell line. In CO115 cells, SF, SO, and RA do not change ERK phosphorylation levels due to a V-raf murine sarcoma viral oncogene homolog B1 (BRAF) activating mutation downstream of RAS oncogene. The missing phosphatase and tensin homolog (PTEN) in CO115 cells and phospho-v-akt murine thymoma viral oncogene homolog (Akt) in HCT15 cells were also observed in this study. MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3 kinase.
apoptosis. Sage extracts and RA did not affect the PI3K/Akt pathway but inhibited the MAPK/ERK pathway in the KRAS mutated HCT15 cell line. The inhibitory effects of sage extracts on phospho-ERK seem to result from an inhibition of KRAS, upstream to BRAF, because it was not observed in CO115 cells. The inhibition of MAPK/ERK by sage extracts seems, however, not to completely explain the inhibition of cell proliferation in HCT15 because RA inhibits phospho-ERK without affecting cell proliferation. These data add S. fruticosa and S. officinalis to the list of potential sources of new active anticancer compounds useful in particular in tumors with a mutagenic KRAS activation and also suggest their possible use in dietary strategies for the control of CRC progression.

ACKNOWLEDGMENTS

The authors thank Dr. Raquel Seruca (from IPATIMUP, Portugal) for providing the HCT15 and CO115 cell lines as well as Dr. Ana Preto for PD-98059. This work was supported by the Foundation for Science and Technology, Portugal, research grant POCI/AGR/62040/2004. C. P. R. Xavier and C. F. Lima were supported by the Foundation for Science and Technology, Portugal, through the grants SFRH/BPD/26316/2006 and SFRH/BPD/27524/2006, respectively.

REFERENCES

32. Psahoulia FH, Mountzi S, Roberts ML, Sasazuki T, Shirasawa S, et al.: Quercetin mediates preferential degradation of oncogenic Ras and causes...

