Some of the Common Symptoms Caused by Delayed Food and Chemical Allergies

Examples of Physical Symptoms

Head
Headache • Sinus headache • Migraine headache
Faintness • Dizziness • Feeling of fullness in the head • Hair loss • etc.

Eyes, Ears, Nose and Throat
Dark circles under the eyes • Swelling around eyes
Pain in eyes • Watery eyes • Red bloodshot eyes
Dilated pupils • Blurring of vision • Runny nose
Stuffy nose • Bloody nose • Excessive mucus formation • Hay fever • Sneezing • Ringing in the ears • Ear ache • Fullness in the ears • Fluid in the middle ear • Hearing loss • Recurrent ear infections
Itching ear • Ear drainage • Sore throats • Swollen tonsils • Changes in voice • Loss of voice • Frequent ‘colds’ • Chronic cough • Gagging • Canker sores
Itching on the roof of the mouth • Recurrent sinusitis • etc.

Heart and Lungs
Palpitations • Decreased heart rate • Low and high blood pressure • Irregular heart rate (arhythmia)
Rapid heart rate (tachycardia) • Asthma • Chest congestion • Yawning • Hoarseness • etc.

Blood
Damaged and killed white blood cells • Low white-blood-cell count • Damaged or killed red blood cells
Blood sludging (rouleaux formation) • Low red blood cell count • Enlarged red blood cells
Platelet clumping • Low percentage of segmented neutrophils (one type of white blood cell)
Increased eosinophils and basophils (types of white blood cells) • Low blood sugar (hypoglycemia) • High blood sugar (diabetes)
Increased blood enzyme levels such as LDH, AST (SGOT) and ALT (SGPT) • High acid level in the blood (causing loss of bone calcium and mineral loss from organs and tissues) • etc.

Glands
Low thyroid levels • High thyroid levels • Low testosterone levels • Depressed pancreatic activity
(thus low alkaline production and low digestive enzyme production) • Depressed or excessive sexual drive • Depressed adrenal function • etc.

Mouth
Bleeding gums • Periodontal disease • Sore tongue
Coated tongue • Bad breath • Cracked lips • Swollen lips • Ulcerations Loose teeth • Tooth loss • TMJ • etc.

Gastrointestinal
Stomach ache • Non-ulcer dyspepsia • Acid indigestion
Continually swollen stomach • Cramps • Ulcers
Nausea • Vomiting • Bloating after meals • Heartburn
Belching • Spastic colitis • Ulcerative colitis • Celiac disease • Flatulence (passing gas) • Feeling of fullness in the stomach long after finishing a meal • Diarrhea
Constipation • Rectal mucous • Abdominal pains or cramps • Appendicitis • Malabsorption • etc.

Skin
Hives • Rashes • Dandruff • Hair loss • Eczema
Psoriasis • Dermatitis • Pallor • Pimples • Acne
Dark circles under eyes • Bags under eyes
Drooping eye lids • Swelling • etc.

Other Symptoms
Autoimmune diseases (rheumatoid arthritis, juvenile-onset diabetes, Graves’ disease, Lupus, multiple sclerosis, myasthenia gravis) • Adult-onset diabetes
Chronic fatigue • Chronic fatigue syndrome (also called myalgic encephalomyelitis or ME) • Chronic muscle fatigue • Crohn’s disease • Sleepy after meals
Insomnia • Snoring • Sleep apnea • Overweight
Malabsorption • Underweight • Weakness • Muscle aches • Muscle spasms • Osteoporosis • Twitching
Stiffness • Joint aches • Arthritis • Swelling of the hands, feet, or ankles • Phlebitis • Cold hands and feet
Restless leg syndrome • Fibromyalgia • Urinary tract symptoms (pain, frequency, night urination, bed-wetting) • Impotency • Kidney problems • Nephritis
Rectal itching • Sea sickness • Motion sickness • Altitude sickness • Chills • Sweats • Thyroid irregularities
Thirst after meals • Back pain • Premenstrual syndrome (PMS) • Yeast infections • Vaginal inflammation
Sudden infant death syndrome (SIDS) • etc.

Examples of Mental Symptoms

Anxiety • Excessive talking • Fear • Depression
Crying • Aggressive behavior • Delusions • Panic attacks • Suicide • Hallucinations • Schizophrenia
Manic depressive • Irritability • Mental dullness
Poor concentration • Poor self control • Poor memory • Mental lethargy • Confusion • Excessive daydreaming • Juvenile and adult hyperactivity
Attention deficit disorder (ADD) • Juvenile and adult delinquency • Seizures • Epilepsy • Restlessness
Learning disabilities • Poor work habits • Slurred speech • Stuttering • Inability to concentrate • Indifference • Poor coordination • Compulsive behavior
Anorexia nervosa • Bulimia • Continuing desire for tobacco or alcohol • Drug addiction • Being highly stressed • Morning fatigue • Hypochondria • etc.
White-Blood-Cell Testing and Counseling for Delayed Food and Chemical Allergies: A Follow-up Study

Jeffrey R. Prager, DDS

Background
I went through Medical Service Center’s food-allergy testing and counseling program and experienced a marked improvement in my health. I offered to conduct a study to see what percentage of its clients had benefited from its type of white-blood-cell test and specialized counseling. The results cover the highlights of a follow-up study conducted from the first of January through March of 1985.

Results
I interviewed 47 of its clients. Of these, 96 percent reported improved health. The distribution was: 71 percent reported their health was significantly improved, 25 percent reported their health was slightly improved, and 4 percent reported no change.

The following common symptoms were relieved by the testing and counseling program:

- fatigue
- overweight
- headaches
- joint pain
- muscle pain
- skin problems
- scalp disorders

Additional benefits reported by some individuals in the study were:
- increased ability to concentrate
- increased desire to exercise
- decreased asthma severity

Conclusion
This program is a non-damaging approach for identifying delayed food and chemical allergies and for removing the underlying cause of numerous health problems. Those who carefully followed the program experienced the best results. The success reports from the clients were impressive. None of the clients reported negative side effects. Only 4 percent reported no change. With 96 percent of the people experiencing health improvements, there is clear evidence the white-blood-cell testing and counseling program is effective.

More than 90 percent of the clients interviewed were satisfied with the program and stated they enjoyed sharing their new understanding of health with their friends. This study demonstrates that white-blood-cell testing and specialized counseling programs could dramatically improve the health of people throughout the country.

The above study was followed by a larger one done by Medical Service Center’s staff. The second study showed a success rate of 91 percent.

Several more physical and emotional symptoms were also relieved by white-blood-cell testing and counseling. Some symptoms were completely relieved while many others were reduced to minimal levels. A few stayed the same, none got worse.

During the 1980s, more than 8,000 people were tested and counseled at the four centers directed by Mark Lovendale. The overwhelming majority were helped and no one was harmed. Many people reported that their medical bills were dramatically reduced after they started the Quality Longevity Program.

Those who bear the mark of pain are never truly free, for they owe a debt to those who still suffer.

Albert Schweitzer

French philosopher, Nobel laureate ... 1875 – 1965

Most board-certified allergists still claim delayed food and chemical allergies do not exist and pressure state and federal officials to restrict availability of white-blood-cell testing and related counseling.
Is Migraine Food Allergy?
A Double-blind Controlled Trial of Oligoantigenic Diet Treatment

J. Egger
C. M. Carter
J. Wilson
M. W. Turner
J. F. Soothill

Department of Neurology and Immunology, Hospital for Sick Children and Institute of Child Health, London

Summary

93% of 88 children with severe frequent migraine recovered on oligoantigenic [delayed-allergy free] diets; the causative foods were identified by sequential reintroduction, and the role of the foods provoking migraine was established by a double-blind controlled trial in 40 of the children. Most patients responded to several foods. Many foods were involved, suggesting an allergic rather than an idiosyncratic (metabolic) pathogenesis. Associated symptoms which improved in addition to headache included abdominal pain, behavior disorder, fits [epileptic], asthma and eczema. In most of the patients in whom migraine was provoked by non-specific factors, such as blows to the head, exercise and flashing lights, this provocation no longer occurred while they were on the diet.

Introduction

Cheese, chocolate and red wine sometimes provoke migraine, allegedly owing to an idiosyncratic response to a pharmacologically active substance, tyramine. This response is perhaps due to monoamine oxidase deficiency, which has been reported in some patients with migraine, but it is found only during attacks. Double-blind administration of tyramine to patients who benefited from a low-tyramine diet did not provoke attacks of migraine. Deficiency of platelet phenol-sulphotransferase in patients with a migraine provoked by foods has also been proposed as a possible basis for idiosyncrasy. Food allergies have also been postulated, though none has been established by controlled studies. In this study children with severe migraine were given an oligoantigenic diet and in those who improved the causative foods were identified by open reintroduction; responses were confirmed by a double-blind controlled trial of reintroduction of the causative foods.

Results

Of the 99 patients who entered the study, 11 later withdrew. 88 completed the oligoantigenic diet: 6 did not improve at all, 78 recovered completely on the first or second oligoantigenic diet, and 4 improved greatly. Of the 82 who improved, all but 8 relapsed on reintroduction of one or more foods. These 8 have remained well. The 74 who relapsed were considered for the controlled trial, but 28 were excluded for various reasons (no appropriate tin [can of food], reacted to placebo tin, unwillingly, or ready after trial was complete), and 2 patients left the trial after accidentally breaking the diet and 4 after refusing the tins. The trial was closed when 40 patients had completed it.

The 88 patients (40 boys, 48 girls; age 3 – 16 years, mean 9.83 years) had had migraine for 6 months – 11 years (mean 3.75 years). 39 had migraine with typical prodromal symptoms and 49 common migraine. 48 had a history of atopic disease. 65 had a first-degree relative with migraine and 64 one with atopic disease. Associated symptoms are shown in table I. Some patients had no further symptoms after the start; others took over 3 weeks to recover. In some children some symptoms became worse at first, especially lassitude, headaches and irritability, and sweating and tremor occasionally occurred. The 6 patients who did not respond had common migraine; 3 had positive skin-prick tests. 6 patients had persistent neurological signs ascribed to cerebral infarction, and all 4 who had computed tomography of the brain had abnormal scans.

Almost all patients had behavior disturbance at the time of an attack, but 41 also had behavior disturbance (mostly hyperkinetic) at other times. In those whose headaches responded on the oligoantigenic diet, most of the associated symptoms (table I), except the permanent neurological abnormalities, also responded.

Antiepileptic drugs were withdrawn in those who became fit-free, without recurrence of fits unless the diet was broken. Many of these symptoms recurred on reintroduction of foods. In 18 patients, open provocation on 27 occasions with several foods caused behavior disorder without headache, whereas other foods caused migraine. This pattern was reproducible in patients given the foods repeatedly.

Of the 40 patients who completed the trial, 17 were allocated to group AP and 23 to group PA. The mean age and the prevalence of the various
symptoms of migraine did not differ between the
two groups (table I). 5 mothers thought they could
distinguish the active and placebo tins by taste or
smell, but only 2 were correct. There was no
significant order effect in the occurrence of
headaches or any migraine-associated symptom or
in the preference for either type of tins, but there were
highly significant relations between the active material
and symptoms for all three assessments (table II).

Excluded foods were reintroduced according to
the taste and views of the child and family, so not
every child had every food. 8 children had no symptoms
when any food was given, and 17 had symptoms with
only one, but most children reacted to several foods
(up to twenty-four), from which one was selected for
testing in the trial. The child who reacted to twenty-
four foods was symptom-free on a nutritionally
adequate and acceptable diet avoiding all these.
Patients were usually very fond of the provoking
foods, sometimes craving them, and often ate very
large amounts. Cows’ milk caused symptoms in
most children. All but 1 of those reacting to milk also
reacted to cheese, whereas 13 reacted to cheese but not
to cows’ milk. Sheep-milk and goats’ milk cheese,
given to those who had reacted to cows’ milk cheese,
caused no symptoms. Fifty-five foods provoked
symptoms (table III). No other obvious repeated
combinations of foods were noted. In some children
symptoms were provoked by tartrazine or chocolate
and by other foods with no obvious chemical
(idiosyncratic) similarities, such as egg or wheat.
Processing a food may affect its tendency to provoke
symptoms; some patients reacted to white wheat flour
but not to brown, and 4 reacted to bacon but not to
pork. Those who reacted to peanuts (a legume) were
separate from those who reacted to other nuts, and 1
of the 2 who reacted to sugar reacted to cane sugar but
not to beet sugar. The median reaction time for
recurrence of symptoms was 2 days (range <1 h – >7
days). Symptoms disappeared again usually in 2 – 3
days (range<1 – 21 days). 14 families had suspected
provoking foods and 11 of these were confirmed;
however, all but 1 patient also had headaches with
other unsuspected foods. Abdominal pain and
distension was usually the first symptom and was
the only symptom after 48 different food challenges.
38 of the patients successfully treated by diet reported
non-dietary provocation before treatment (table IV).

During the diet period, smoke and perfume still
provoked migraine, but only 3 patients still had
symptoms after exposure to the other factors.

<p>| Table I |
|-----------------|------------------|-----------------|-----------------|
| Associated Symptoms and Signs | Patients completing oligoantigenic diet (88) | Patients completing [double-blind] trial (40) |</p>
<table>
<thead>
<tr>
<th>Before diet</th>
<th>On diet</th>
<th>Group AP</th>
<th>Group PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain, diarrhoea, flatulence</td>
<td>61</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Behavior disorder</td>
<td>41</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Aches in limbs</td>
<td>41</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Fits [epileptic]</td>
<td>14*</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Permanent neurological signs</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>34</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Recurrent mouth ulcers</td>
<td>15</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Vaginal discharge</td>
<td>11</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Asthma</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Eczema</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>*Sometimes coinciding with headaches in all 14; 9 had generalized of partial seizures, coinciding with headaches in all but 1.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Table II |
|-----------------|-----------------|-----------------|-----------------|
| Occurrences of Headache, or Any Migraine-related Symptom, and Preference for Active or Placebo Tins |
|-----------------|-----------------|-----------------|-----------------|
| Heads | Migraine-associated symptoms | Preference |
AP	PA	Total	AP	PA	Total	AP	PA	Total	
Neither food	2	6	8	1	2	3	1	2	3
Active food	14	12	26*	12	15	27*	0	2	2*
Placebo	0	2	2*	0	2	2*	16	19	35*
Both foods	1	3	4	4	4	8	–	–	–
Total	17	23	40	17	23	40	17	23	40
*Difference between active and placebo; p<0.001.									
45 patients (52%) had positive skin-prick tests to one or more of the five antigens we use routinely for identifying atopic subjects (timothy grass pollen, *Dermatophagoides pteronyssinus*, cat fur, cows' milk, and hens’ eggs). 63 patients (72%) gave positive reactions to one or more of twenty-eight antigen tested. No difference in response to diet was noted in patients with or without positive prick tests to one or more of the five or the twenty-eight antigens. Though some prick tests for foods which caused symptoms were positive (table V), the association was not strong and only 3 patients would have recovered if they had avoided only the foods to which they had positive prick tests. Similarly, 28% of the 64 patients tested had high serum IgE levels, but IgE antibodies were not helpful in identifying causative foods (table V).

2 patients, though they recovered on the oligoantigenic diet, decided to return to a full diet and drug treatment. The rest have all remained on their diets, without any evidence of adverse effects, symptom-free except after occasional breaks of diet, off antimigraine drugs, and usually off antiepileptic drugs. 5 patients have used sodium cromoglycate (400 mg before the meal) before planned breaks of the diet and have remained free of symptoms. After more than a year of successful diet, 5 patients noted that they no longer got symptoms when they took some or all of the causative foods and have expanded the diet, 2 without restriction or relapse.

Discussion

This trial shows that most children with severe frequent migraine recover on an appropriate diet, and that so many foods can provoke attacks that any food or combination of foods may be the cause. Intolerance to such a wide range of foods suggests allergic disease rather than metabolic idiosyncrasy. The high prevalence of other atopic disease in the children and their first-degree relatives and the high frequency of positive skin-prick tests support this view, but there was no great excess of raised IgE or IgE antibodies

The lack of IgE antibodies to many of the causative foods, the slow response, and the lack of obvious

<table>
<thead>
<tr>
<th>Food</th>
<th>n</th>
<th>Food</th>
<th>n</th>
<th>Food</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows' milk</td>
<td>27</td>
<td>Peanuts</td>
<td>5</td>
<td>Malt</td>
<td>2</td>
</tr>
<tr>
<td>Egg</td>
<td>24</td>
<td>Bacon</td>
<td>4</td>
<td>Sugar</td>
<td>2</td>
</tr>
<tr>
<td>Chocolate</td>
<td>22</td>
<td>Potato</td>
<td>4</td>
<td>Ginger</td>
<td>2</td>
</tr>
<tr>
<td>Orange</td>
<td>21</td>
<td>Yeast</td>
<td>4</td>
<td>Honey</td>
<td>2</td>
</tr>
<tr>
<td>Wheat</td>
<td>21</td>
<td>Mixed nuts</td>
<td>4</td>
<td>Pineapple</td>
<td>2</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>14</td>
<td>Apple</td>
<td>4</td>
<td>Vegetable oils</td>
<td>2</td>
</tr>
<tr>
<td>Cheese</td>
<td>13</td>
<td>Peaches</td>
<td>4</td>
<td>Lentils</td>
<td>2</td>
</tr>
<tr>
<td>Tomato</td>
<td>13</td>
<td>Grapes</td>
<td>4</td>
<td>Peas</td>
<td>2</td>
</tr>
<tr>
<td>Tartrazine</td>
<td>12</td>
<td>Chicken</td>
<td>3</td>
<td>Ice cream</td>
<td>2</td>
</tr>
<tr>
<td>Rye</td>
<td>12</td>
<td>White wheat</td>
<td>3</td>
<td>Rabbit</td>
<td>1</td>
</tr>
<tr>
<td>Fish</td>
<td>9</td>
<td>flour</td>
<td>3</td>
<td>Dates</td>
<td>1</td>
</tr>
<tr>
<td>Pork</td>
<td>9</td>
<td>Artificial milk</td>
<td>3</td>
<td>Avocado</td>
<td>1</td>
</tr>
<tr>
<td>Beef</td>
<td>8</td>
<td>substitute</td>
<td>3</td>
<td>Rhubarb</td>
<td>1</td>
</tr>
<tr>
<td>Maize [corn]</td>
<td>8</td>
<td>Banana</td>
<td>3</td>
<td>Leek</td>
<td>1</td>
</tr>
<tr>
<td>Soya</td>
<td>7</td>
<td>Strawberries</td>
<td>3</td>
<td>Lettuce</td>
<td>1</td>
</tr>
<tr>
<td>Tea</td>
<td>7</td>
<td>Melon</td>
<td>3</td>
<td>Cucumber</td>
<td>1</td>
</tr>
<tr>
<td>Oats</td>
<td>6</td>
<td>Carrots</td>
<td>3</td>
<td>Cauliflower</td>
<td>1</td>
</tr>
<tr>
<td>Goats' milk</td>
<td>6</td>
<td>Lamb</td>
<td>2</td>
<td>Mushrooms</td>
<td>1</td>
</tr>
<tr>
<td>Coffee</td>
<td>6</td>
<td>Rice</td>
<td>2</td>
<td>Runner beans</td>
<td>1</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>Non-specific Provokers of Migraine in 38 Patients</th>
<th>Before diet</th>
<th>On diet</th>
<th>Before diet</th>
<th>On diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Trauma</td>
<td>11</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Emotional</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Perfumes and/or cigarette smoke</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Table V

| Association of Positive Skin-prick Tests and IgE Antibodies to Foods With Provocation of Childhood Migraine |
|---|----------------|----------------|
| Skin-prick* test | IgE antibodies† |
| Number of tests positive for a provoking food | 57 | 8 |
| Number of tests negative for a provoking food | 141 | 152 |
| Number of tests positive for a non-provoking food | 80 | 24 |
| Patients who would be cured by avoidance of indicated foods | 3 | 0 |

*Twenty-one food antigens tested in 87 patients. Wheal diameter >3 mm taken as positive.
†Fifteen food antigens tested in 76 patients. Binding >2x cord serum taken as positive.
differences between atopics and non-atopics suggest that IgE may not be important in the mechanism of the presumed allergy. When provoking foods were given, abdominal symptoms usually recurred first; the allergic reactions may therefore occur in the gut, and the other manifestations may result from released mediators or from circulating antigen or antigen-antibody complexes. However, patients with and without gastrointestinal symptoms responded equally well….

In the patients who stopped having [epileptic] fits, anticonvulsant drugs were withdrawn without recurrence of fits while they remained on the diet. Patients with migraine and epilepsy and probably many with epileptic headache are likely to benefit from the diet. Since many of these symptoms occurred after foods other than those causing headaches, the possibility of food allergy as a cause of these symptoms in children without migraine needs further study. Identification of food allergy is important since it is easily treatable and the benefit our patients experienced was often very great ….

It is unfortunate that no tests are available for identifying the causative foods, since the oligoantigenic diet is very demanding ….

Brackets [] indicate additions added by Mark Lovendale. Abbreviated for space; call 949-661-4001 for complete study.

Summary by Mark Lovendale
This 1983 Lancet study is still the largest, most successful study ever done on migraine headaches. It is the most successful because the children avoided the foods to which they had delayed allergic reactions and thereby removed the cause of their migraines instead of just treating their symptoms with drugs or herbs. An added advantage is there were no negative side effects.

This study was peer-reviewed and published in one of the world’s leading medical journals. It was done double-blind so the results could not be dismissed as invalid. The study showed clearly that delayed food allergies are the underlying cause of migraine headaches and several other ailments which are major health problems today.

This study is just one example of thousands, some done double-blind, which show conclusively that delayed allergies are the main cause of hundreds of ailments. (See page 30)

Drs. J. M. Sheldon and Theron Randolph were the first to discover that migraines are caused by delayed food allergies. Their discovery was published in 1935 (American Journal of Medical Science) and confirmed in this and other studies: Kailin, EW, 1970; Miller, JB, 1977; Grant, EC, 1978; Monro, J, 1983; Egger, J, 1989.

Traditional allergists dismissed this study by claiming the successes were caused by avoidance of a chemical in cheese, tyramine, known to cause migraines. When you look at all the different foods in Table III which caused migraines, you see this claim is mistaken. The medical establishment continues to ignore this study and many similar studies.

Another reason this study and others like it continue to be suppressed is they reveal that the traditional allergist’s expensive skin-prick test is ineffective for discovering most types of allergies and their testing and treatment methods often cause severe health problems and occasional deaths. Table V shows that if their skin-prick test had been relied on, less than 3 percent of these children would have been freed of their migraines, instead of 93 percent.

Some traditional doctors have tried to discredit this study by claiming the symptoms were caused by psychological problems. When a person has food-allergy symptoms and psychological problems, it is probable that the delayed allergies are causing both the physical and psychological problems.

The idea that migraines are caused by sexual abuse during childhood or other previous trauma is discredited by this and many other scientific studies on delayed allergies.

Table I shows that several other health problems were eliminated. Children often start with behavior disorders and end with violent behavior. So-called experts blame parents, teachers, violent movies and video games. These can be added factors, but the main cause is delayed allergies. Like hyperactivity, behavioral problems should be solved by using allergy-free diets, not by prescribing drugs like Ritalin and Prozac.

With 12 out of 14 children (85 percent) becoming free of their epileptic fits, removing delayed food allergies is also proven to be the most successful treatment for epilepsy.

One reason this study has not changed the way migraines and several other ailments are treated is that the oligoantigenic (elimination and challenge feeding) diet test used is very time-consuming and often costs more than $15,000 per person.

A blood test now available, called the Prime Test, reveals white-blood-cell damage, the main mechanism of delayed allergies. It tests for 220 foods and chemicals and is more accurate than the trial-and-error diet method used in this Lancet study. Because of these and other differences, the Prime Test’s success rate with migraine patients is higher than 93 percent. This test, with counseling, is available for less than $700.

To suppress migraine symptoms with prescription drugs or herbs still leaves damage continuing throughout the body. These approaches in the long run are ineffective and damaging. It is unethical not to use the only approach that removes the underlying cause of migraines and other symptoms.

Your symptoms are there to help you. They let you know when there is a problem with your lifestyle. The head is only one area of the body being damaged by the delayed allergic reactions. If you continue to take drugs, herbs or use any other approach rather than removing the cause of your symptoms, you are setting yourself up for a lifetime of unnecessary suffering.