Total synthesis and biological evaluation of (+)- and (-)-Butyl ester of rosmarinic acid L.-J. HUANG, C.-H. LI, Z.-M. LU, Z.-B. MA and D.-Q. YU* Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (Received 20 January 2005; revised 22 February 2005; in final form 23 February 2005) An efficient method for the synthesis of the natural product (+)-(R)-butyl ester of rosmarinic acid (+)-(R)-1 and its enantiomer (-)-(S)-1 has been developed by chemical resolution of its phenyl lactic acid precursors 4 with (-)-menthol. Their antioxidative and anti-tumor activities were evaluated. Keywords: (+)- and (-)-Butyl ester of rosmarinic acid; Chemical resolution ### 1. Introduction (+)-(R)-Butyl ester of rosmarinic acid (+)-(R)-1 (figure 1) isolated from *Isodon oresbius* in 1999 [1] was a derivative of rosmarinic acid which possesses various biological activities such as antioxidant [2], anti-HIV [3] and anti-inflammatory effects [4]. Two synthetic routes of the skeleton of rosmarinic acid have been reported [5,6]. In order to establish the chiral center, the expensive chiral material tyrosine was used in one route [5]; the method of chemoenzymatic resolution was used in another route [6]. In an earlier report, we have described the synthetic route of racemic compound 1 in moderate yield [7]. The following contribution is dedicated to the efficient synthesis of optically active form (+)-(R)-1 and (-)-(S)-1 (figure 1) through the chemical resolution of its phenyl lactic acid precursors 4 with (-)-menthol. #### 2. Results and discussion (+)-(R)-1 and (-)-(S)-1 were synthesized via piperonal 2 as a starting material in seven steps (scheme 1). Piperonal 2 was reacted with excess of aceturic acid in the presence of anhydrous NaOAc in Ac₂O to give azalactone 3. We adopted 'one-pot' procedure in which 3 was first refluxed with 3 mol/L hydrochloric acid, subsequent addition of excess zinc amalgam to ^{*}Corresponding author. E-mail: dqyu@imm.ac.cn Figure 1. Absolute configuration of compound 1. Scheme 1. Synthesis of (+)- and (-)-1. Regents and conditions: (a) aceturic acid, Ac₂O, NaOAc, 120°C, 3.5 h; (b) HCl, 100°C, 4 h, then Zn/Hg, HCl, 3 h; (c) H₂SO₄, CH₂Cl₂, (-)-menthol, 24 h, column chromatography; (d) NaOH, THF/CH₃OH/H₂O, reflux, 2 h: (e) H₂SO₄, CH₂Cl₂, n-BuOH, 24 h; (f) DCC, DMAP, CH₂Cl₂, -20°C, 10 h; (g) BBr₃, -78°C, 1.5 h; (h) K₂CO₃, ethanol, PhCH₂Cl, reflux, 5 h; (i) malonic acid, pyridine, piperidine, 110°C, 3 h. Table 1. Anti-tumor activities of (+)-(R)-1, (-)-(S)-1 and (\pm) -1 against human colon cancer (HT-29), ovary cancer (A2780) and melanin cancer (A2375) cell lines *in vitro*. | Compound | $IC_{50}(Mol/L)$ | | | |---------------------------------|---|--|---| | | HT-29 | A2375 | A2780 | | (±)-1
(+)-(R)-1
(-)-(S)-1 | 2.53×10^{-4}
3.02×10^{-4}
2.21×10^{-3} | 1.38×10^{-3}
5.61×10^{-4}
>1 | $2.38 \times 10^{-3} \\ 8.35 \times 10^{-3} \\ > 1$ | give 4. (+)- and (-)-4 were obtained by resolution with (-)-menthol through the intermediates 5 and 6. Absolute configuration of (+)- and (-)-4 was determined to R and S by comparison of the optical rotations with the known values of R- and S-3- (3,4-dihydroxyphenyl) lactic acid, respectively [5,8]. The key intermediates (+)- and (-)-7 were obtained by esterification of (+)- and (-)-4 with n-BuOH, respectively. Esterification of (+)- and (-)-10 with 10 which was obtained from 8 via intermediate 9 produced (+)- and (-)-11 in 93% and 91% yield, respectively. The title compounds (+)-(R)-1 and (-)-(S)-1 were obtained by treating (+)- and (-)-11 with BBr₃ in ca 80% yield. Compounds (+)-(R)-1, (-)-(S)-1 and (\pm)-1 were evaluated for their anti-tumor and antioxidative activities (tables 1 and 2). (\pm)-1 and (+)-(R)-1 showed the similar activities against human colon cancer (HT-29), ovary cancer (A2780), melanin cancer (A2375) cell lines. In particular, (+)-(R)-1 showed 10-fold, 10^4 -fold and 10^3 -fold better activities than (-)-(S)-1 against the above-mentioned three cell lines, respectively. The results indicated that the configuration of chiral carbon might be a playing crucial role for the anti-tumor activities. The antioxidative activities of compounds (+)-(R)-1, (-)-(S)-1 and (\pm)-1 were compared with V_E as reference. All the three compounds exhibited good inhibition on Fe²⁺ induced lipid peroxidation (malondialdehyde formation) in rat liver microsomes *in vitro*. The inhibitory effects are equal to V_E . # 3. Experimental # 3.1 General experimental procedures Melting points were determined on a XT_4 - 100_X micro-melting apparatus and are uncorrected. IR spectra were run on a NICOLET IMPACT-400 spectrometer. Optical Table 2. Effects of (+)-(R)-1, (-)-(S)-1, (\pm)-1 and V_E on cysteine-Fe²⁺ induced malondial dehyde formation in rat liver microsomes *in vitro*. | Compound | mol/L | Inhibition rate (%) | |---------------|-----------|---------------------| | (±)-1 | 10^{-4} | 91.7 | | | 10^{-5} | 81.6 | | | 10^{-6} | 56.6 | | (+)-(R)-1 | 10^{-4} | 91.7 | | | 10^{-5} | 81.1 | | | 10^{-6} | 49.0 | | (-)- (S) -1 | 10^{-4} | 91.4 | | | 10^{-5} | 78.0 | | | 10^{-6} | 47.5 | | $V_{\rm E}$ | 10^{-4} | 97.5 | | _ | 10^{-5} | 62.6 | | | 10^{-6} | 57.3 | rotations were measured on PE-241 digital polarimeter. NMR spectra were recorded on Varian Mercury-300 spectrometer (300 MHz for 1 H and 75 MHz for 13 C). Chemical shifts of 1 H and 13 C spectra are referenced to the NMR solvents. Mass spectra were obtained on a ZAB-2F spectrometer. TLC was carried out on silica gel (GF₂₅₄). Column chromatography was run on silica gel (200–300 mesh) from Qingdao Ocean Chemical Factory. Dichloromethane was distilled over P_2O_5 . # 3.2 General procedures for the synthetic compounds - **3.2.1 Compounds 5 and 6.** To a solution of **4** (1.0 g, 4.8 mmol) and (-)-menthol (0.9 g, 5.8 mmol) in 30 mL CH₂Cl₂, 5 drops concentrated H₂SO₄ were added. The mixture was stirred at room temperature for 24 h. Water (10 mL) was added and the organic phase was washed with water (2 \times 10 mL), dried over Mg₂SO₄ and evaporated to give the crude product (1.7 g) which was purified by column chromatography (PE: EtOAc = 20:1). The first fraction was (-)-menthol and discarded, the second fraction was compound 6 (0.7 g) as colorless oil, the third fraction was the mixture of 5 and 6 (0.37 g), the fourth fraction was compound 5 (0.6 g) as colorless needles. Compound 5: mp 64-65°C, $[\alpha]_D^{25}$ - 27.7 (c 0.66, CHCl₃). 1 HNMR (300 MHz, CDCl₃) δ (ppm): 6.75–6.67 (m, 3H), 5.92 (s, 2H), 4.73 (m, 1H, for menthol), 4.33 (dd, 1H, J = 6.9 Hz, 4.2 Hz), 3.06 (dd, 1H, J = 13.8 Hz, 4.2 Hz), 2.83 (dd, 1H, J = 13.8 Hz, 6.9 Hz), 2.60 (brs, 1H), 2.02 (m, 9H, for menthol). EI-MS m/z (%): 348 $(M^+, 15)$, 330 (10), 192 (45), 135 (100). Compound 6: $[\alpha]_D^{25} - 59.1$ (c 0.57, CHCl₃). ¹HNMR (300 MHz, CDCl₃) δ (ppm): 6.75–6.66 (m, 3H), 5.92 (s, 2H), 4.75 (m, 1H, for menthol), 4.37 (dd, 1H, J = 6.0 Hz, 4.2 Hz), 3.04 (dd, 1H, J = 13.8 Hz, 4.2 Hz), 2.86 (dd, 1H, $J = 13.8 \,\mathrm{Hz}$, 6.0 Hz), 2.58 (brs, 1H), 1.94–0.72 (m, 9H, for menthol). EI-MS m/z (%): 348 $(M^+, 15), 330 (10), 192 (45), 135 (100).$ - **3.2.2 Compounds** (+)-4 and (-)-4. The mixture of 5 (0.5 g, 1.44 mmol) or 6 (0.5 g, 1.44 mmol) in 20 mL THF/CH₃OH/H₂O (1:1:1) with NaOH (69 mg, 1.73 mmol) was refluxed for 2 h. The mixture was cooled to room temperature, acidified with ice-cold 2 mol/L HCl (5 mL) and extracted with EtOAc (3 × 20 mL), the combined organic phase was washed with water (2 × 15 mL), dried over Mg₂ SO₄ and evaporated to give the crude product (+)-4 or (-)-4, respectively. The crude product was recrystallized in petroleum ether and EtOAC to give (+)-4 (0.27 g) or (-)-4 (0.28 g) as colorless needle. Compound (+)-4: mp 109–110°C, $[\alpha]_D^{25} + 13.3$ (c 0.66, CH₃OH). Compound (-)-4: mp 112–113°C, $[\alpha]_D^{25} 15.6$ (c 0.41, CH₃OH). The spectral data of (+)-4 and (-)-4 were the same as racemic compound 4. Absolute configuration of (+)-4 was determined to R by comparison the optical rotation with the known value of R-3-(3,4-dihydroxyphenyl)lactic acid ($[\alpha]_D^{25} + 10.8$ in CH₃OH) and that of (-)-4 was determined to S by comparison with S-3-(3,4-dihydroxylphenyl)-lactic acid ($[\alpha]_D^{25} 10.8$ in CH₃OH) [5,8]. - **3.2.3 Compounds** (+)-**7 and** (-)-**7.** To a solution of (+)-**4** (0.21 g, 1 mmol) or (-)-**4** (0.25 g, 1.2 mmol) and n-butanol (0.15 g, 2 mmol) in 10 mL CH₂Cl₂, 3 drops concentrated H₂SO₄ was added. The mixture was stirred at room temperature for 24 h; water (5 mL) was added. The organic phase was washed with water (2 × 5 mL), dried over Mg₂SO₄ and evaporated to give the crude product (+)-**7** or (-)-**7** which was purified by column chromatography (PE: EtOAc = 7:1). (+)-**7** (0.2 g) and (-)-**7** (0.24 g) were obtained as slightly yellow oil, respectively. (+)-**7**: $[\alpha]_D^{25} + 27.3$ (c 0.74, CHCl₃). (-)-**7**: $[\alpha]_D^{25}$ -29.5 (c 1.38, CHCl₃). ¹HNMR (300 MHz, CDCl₃) δ (ppm): 6.73 (d,1H, J = 7.8 Hz), 6.71 (s,1H), 6.65 (d, 1H, J = 7.8 Hz), 5.92 (s, 2H), 4.38 (dd, 1H, J = 6.6 Hz, 4.2 Hz), 4.15 (t, 2H, J = 6.6 Hz), 3.03 (dd, 1H, J = 14.1 Hz, 4.2 Hz), 2.88 (dd, 1H, J = 14.1 Hz, 6.6 Hz), 1.64 (m, 2H), 1.36 (m, 2H), 0.94 (t, 3H, J = 6.6 Hz). EI-MS m/z (%): 266 (M⁺, 10), 248 (5), 135 (100). - **3.2.4 Compounds** (+)-**11 and** ()-**11**. To a solution of (-)-**7** (0.2 g, 0.75 mmol) in anhydrous CH₂Cl₂ (10 mL) was added **10** (0.54 g, 1.5 mmol) and DMAP (12 mg, 0.1 mmol). DCC (0.31 g, 1.5 mmol) was added at -20° C and the mixture was allowed to room temperature within 10 h. N, N-Dicyclohexylurea was filtered and the filtrate was evaporated to give the crude product which was purified by column chromatography. (-)-**11** (0.41 g) were obtained as colorless oil. $[\alpha]_D^{25} 28.1$ (c 0.70, CHCl₃). According to the same procedure, (+)-**11** (0.31 g) was obtained as the colorless oil from (+)-**7**. $[\alpha]_D^{25} + 28.8$ (c 0.98, CHCl₃). HNMR (300MHz, CDCl₃): δ (ppm): 7.61 (d, 1H, J = 15.9 Hz, = CH), 7.49-7.31 (m, 10H, ArH), 7.14 (d, 1H, J = 2.0 Hz, ArH), 7.08 (dd, 1H, J = 8.4 Hz, 2.0 Hz, ArH), 6.92 (d, 1H, J = 8.4 Hz, ArH), 6.78 (d, 1H, J = 1.4 Hz, ArH), 6.74 (d, 1H, J = 8.0 Hz, ArH), 6.70 (dd, 1H, J = 8.0 Hz, 1.4 Hz, ArH), 6.30 (d, 1H, J = 15.9 Hz, = CH), 5.93 (s, 2H, OCH₂O), 5.30 (t, 1H, J = 6.6 Hz, CHO), 5.20 (s, 2H, OCH₂Ph), 5.19 (s, 2H, OCH₂Ph), 4.16 (t, 2H, J = 6.6 Hz, CHO), 3.12 (t, 2H, J = 6.6 Hz, CH₂Ar), 1.65-1.58 (m, 2H, CH₂), 1.41-1.28 (m, 2H, CH₂), 0.92 (t, 3H, J = 7.2 Hz, CH₃); IR (KBr, cm⁻¹): 1743, 1716, 1634, 1596; EI-MS: m/z 608 (M⁺, 0.2), 91 (100). - **3.2.5** Compounds (+)-(R)-1 and (-)-(S)-1. To (-)-11 (0.35 g, 0.58 mmol) in anhydrous CH_2Cl_2 (15 mL) was added slowly BBr_3 (0.16 ml, 1.74 mmol) at $-78^{\circ}C$. The mixture was stirred for 1.5 h at -78° C and at once poured into H₂O (25 mL). The aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic phase was dried over Mg₂SO₄ and concentrated. The crude product was purified by column chromatography (PE: EtOAC = 1:20) to give (-)-(S)-1 (0.22 g) as slight yellow solid. $[\alpha]_D^{25}$ - 28.7 (c 0.52, CH₃OH). ¹HNMR (300 MHz, DMSO-d6): ((ppm) 7.48 (d, 1H, J = 15.9 Hz, H-7), 7.06 (d, 1H, $J = 1.8 \,\mathrm{Hz}$, H-2), 7.04 (dd, 1H, $J = 7.8 \,\mathrm{Hz}$, 1.8Hz, H-6), 6.77 (d, 1H, $J = 7.8 \,\mathrm{Hz}$, H-5), 6.65 (d, 1H, J = 1.8 Hz, H-2'), 6.63 (d, 1H, J = 7.8 Hz, H-5'), 6.49 (dd, 1H, J = 7.8 Hz, 1.8 Hz, H-5')6'), 6.26 (d, 1H, J = 15.9 Hz, H-8), 5.08 (t, 1H, J = 6.6 Hz, H-8'), 4.03 (t, 2H, J = 6.0 Hz, H-1''), 2.95 (d, 2H, J = 6.6 Hz, H-7'), 1.52–1.38 (m, 2H, H-2"), 1.36–1.28 (m, 2H, H-3"), 0.84 $(t, 3H, J = 7.2 \text{ Hz}, H-4''); ^{13}\text{CNMR} (75\text{MHz}, DMSO-d6); ((ppm) 169.5 (C-9'), 165.9 (C-9), ($ 148.6 (C-4), 146.3 (C-3), 145.5 (C-7), 144.9 (C-3'), 144.1 (C-4'), 125.6 (C-1'), 125.3 (C-1), 121.7 (C-6), 120.1 (C-6'), 116.7 (C-2'), 115.7 (C-5), 115.4 (C-5'), 114.9 (C-2), 112.9 (C-8), 72.9 (C-8'), 64.4 (C-1"), 36.2 (C-7'), 30.0 (C-2"), 18.4 (C-3"), 13.5 (C-4"); IR (KBr, cm⁻¹): 3379, 1716, 1604; FAB-MS: m/z 417 (M⁺ + H, 0.1), 163 (100). HRFAB-MS: m/z 417.1573 $[M + H]^+$ (calcd for $C_{22}H_{25}O_8$, 417.1549). (+)-(**R**)-1 was prepared from (+)-11 according to the same procedure: $[\alpha]_D^{25} + 27.6$ (c 0.34, CH₃OH). FAB-MS: m/z 417 (M⁺ + H, 0.1), 163 (100). HRFAB-MS: m/z 417.1534 [M + H]⁺ (calcd for $C_{22}H_{25}O_8$, 417.1549). - **3.2.6 Compounds 3, 4 and 10.** Azalactone **3** was prepared from piperonal **2** according to Erlenmeyer-PlÖchl method [9,10]. **4** was obtained from **3** according to the literature [11]. **10** was easily prepared from **9** (obtained from the corresponding phenolic benzaldehyde **8** by reaction with benzyl chloride in ethanol) by Knoevenagel reaction [12]. All the spectral data of compounds **3, 4** and **10** are compatible with the reported data [10–12]. # 3.3 Biological evaluation - **3.3.1 Anti-tumor activities**. Anti-tumor activities of (+)-(R - **3.3.2** Antioxidative activities. The antioxidative effects of (+)-(R)-(-)-(S)-(S)-(+)-(S)-(+)-(-)-(# Acknowledgements We wish to thank Dr. Hong-qi Xin and Professor Geng-tao Liu for in vitro testing. ## References - [1] H. Huang, Q.R. Chao, R.X. Tan. Planta Med., 65, 92 (1999). - [2] J.H. Chen, C.T. Ho. J. Agric. Food Chem., 45, 2374 (1997). - [3] N. Arda, N. Goeren, A. Kuru, T. Pengsuparp, J.M. Pezzuto, S.X. Qiu, G.A. Cordell. J. Nat. Prod., 60, 1170 (1997). - [4] P.W. Peake, B.A. Pussell, P. Martyn, V. Timmermans, J.A. Charlesworth. Int. J. Immunopharmacol., 13, 853 (1991). - [5] D.E. Bogucki, J.L. Charlton. Can. J. Chem., 75, 1783 (1997). - [6] T. Eicher, M. Ott, A. Speicher. Synthesis, 755 (1996). - [7] L.J. Huang, D.Q. Yu. Chin. Chem. Lett., accepted. - [8] Y. Shoji, S. Mayumi, N. Itsuo, N. Tetsuro, O. Hikokochi. Chem. Pharm. Bull., 33, 527 (1985). - [9] J.E. Audia, D.A. Evrard, G.R. Murdoch, J.J. Droste, J.S. Nissen, K.W. Schenck, P. Fludzinski, V.L. Lucates, M.L. Cohen. J. Med. Chem., 39, 2773 (1996). - [10] R. Glaser, M. Twaik. Tetrahedron Lett., 17, 1219 (1976). - [11] H.N.C. Wong, Z.L. Xu, H.M. Chang, C.M. Lee. Synthesis, 8, 793 (1992). - [12] P.W. Erhardt, R.J. Gorczynski, W.G. Anderson. J. Med. Chem., 22, 907 (1979). Copyright of Journal of Asian Natural Products Research is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listsery without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.