The work of Monsanto

The work of Monsanto Share this with your friends

Are genetically modified foods and crops dangerous to human health and to the environment?

Viewpoint: Yes, genetically modified foods and crops, which result from techniques that may have profound, unanticipated, and dangerous consequences, are dangerous to human health and the environment.

Viewpoint: No, genetically modified foods are not dangerous; they are essential for the world's future.

In the 1970s, scientists learned how to cut and splice DNA to form recombinant DNA molecules and began developing techniques that made it possible to isolate, clone, and transfer genes from one organism to another. Scientists hoped that the new techniques of molecular biology, often referred to as genetic engineering, would be used to treat genetic diseases. But it was soon clear that genetic engineering could also be used to manipulate the genetic materials of plants, animals, and microorganisms for commercial purposes.

Responding to widespread fears about the safety of recombinant DNA technology and genetic engineering, the City Council of Cambridge, Massachusetts, proposed a ban on the use of gene splicing experiments in area laboratories. Other cities and states debated similar bans. However, the development of guidelines for recombinant DNA research and the successful use of the technique to produce valuable drugs, like human insulin and erythropoietin, diminished public anxieties. Recombinant DNA techniques also led to the development of transgenic organisms and genetically modified (GM) crops.

By the 1990s, GM crops were being field-tested or commercialized in the United States, Canada, Argentina, and Australia. Critics of the new technologies called the products of GM crops "Frankenfoods" and insisted that GM crops were dangerous to human health and the environment. The Cartagena Protocol on Biosafety, sponsored by the United Nations Convention of Biological Diversity, was adopted in 2000. The goal of the Protocol was to regulate the trade and sale of genetically modified organisms. However, in Europe and the United States concerns about the safety of genetically modified foods led to protests, boycotts, and demands for bans on GM foods.

Genetic modification of plants and animals usually involves the addition of a gene that provides a desirable trait not ordinarily present in the target variety. Those who support the use of genetically modified plants, animals, and foods believe that GM products will become essential components of our future food supply. Particularly in areas of the world threatened by malnutrition, famine, and starvation, GM crops seem to promise benefits in terms of costs, safety, availability, and nutritional value of staple foods. Predicting a global population of 7 billion by 2013, demographers warn that agricultural biotechnology and productivity will become increasingly critical in the not-too-distant future. Genetically modified plants and animals could be used as a source of drugs, vaccines, hormones, and other valuable substances. The addition of appropriate genes may also help accelerate the growth of plants, trees, and animals, or make it possible for them to grow and flourish in harsh climates.

Based on studies of GM foods and comparisons with conventional food sources, most scientists consider GM products to be safe for the environment and for human consumption. Indeed, many common food sources, such as potatoes and manioc, contain chemicals that can be toxic or dangerous to some or all consumers. Conventional foods, such as peanuts, are extremely dangerous to people with allergies, while others contain chemicals that may cause cancer or birth defects. Part of a plant may be toxic, such as rhubarb leaves, whereas other parts are safe to eat. Moreover, supporters contend that GM crops are subjected to higher level of scrutiny than plant varieties developed by traditional breeding techniques.